
ASME Turbo Expo 
June 3-7, 2013, San Antonio, Texas 

GT2013-94501 
 
 

INVERSE AEROACOUSTIC DESIGN OF AXIAL FANS USING GENETIC 
OPTIMIZATION AND THE LATTICE-BOLTZMANN METHOD 

 
 
 

Michael Stadler 
NInsight 

Graz, Austria 

Michael B. Schmitz 
ebm-papst St. Georgen 
St. Georgen, Germany 

Wolfgang Laufer 
ebm-papst St. Georgen 
St. Georgen, Germany 

 Peter Ragg 
ebm-papst St. Georgen 
St. Georgen, Germany 

 

 
 
 

ABSTRACT 
The noise emitted by axial fans plays an integral role in 

product design. When conventional design procedures are 
applied, aeroacoustic properties are controlled via an extensive 
trial-and-error process. This involves building physical 
prototypes and performing acoustic measurements. In general, 
this procedure makes it difficult for a designer to gain an 
understanding of the functional relationship between noise and 
geometrical parameters of the fan. Hence, it is difficult for a 
human designer to control the aeroacoustic properties of the 
fan. 

To reduce the complexity of this process, we propose an 
inverse design methodology driven by a genetic algorithm. It 
aims to find the fan geometry for a set of given objectives. 
These include, most notably, the sound pressure frequency 
spectrum, aerodynamic efficiency, pressure head and flow rate. 
Individual bands of the sound pressure frequency spectrum may 
be controlled implicitly as a function of certain geometric 
parameters of the fan. 

In keeping with inverse design theory, we represent the 
design of axial fans as a multi-objective, multi-parameter 
optimization problem. The individual geometric components of 
the fan (e.g., rotor blades, winglets, guide vanes, shroud and 
diffusor) are represented by free-form surfaces. In particular, 
each blade of the fan is parameterized individually. Hence, the 
resulting fan is composed of geometrically different blades. 
This approach is useful when studying noise reduction. 

For the analysis of the flow field and associated objectives, 
we utilize a standard RANS solver. However, for the evaluation 
of the generated noise, a meshless Lattice-Boltzmann solver is 
employed. The method is demonstrated for a small axial fan, 
for which tonal noise is reduced.  

NOMENCLATURE 
N … number of blades [1] 
BPFi … blade passing frequency of order i [Hz] 
n … rotational speed [s-1] 
η … efficiency [1] 
Lw … sound power level [dB] 
p … static pressure [Pa] 
𝑝𝑝𝑡𝑡  … total pressure [Pa] 
𝑉̇𝑉 … flow rate [m³/s] 
D … diameter of the fan [m] 
R … hub radius [m] 
Rfh … fillet radius for the hub [m] 
ld … axial depth of the hub [m] 
𝜌𝜌 … density of air [kg/m³] 
𝜂𝜂 = 𝑝𝑝 ∙ 𝑉̇𝑉/(𝑀𝑀 ∙ ω) … aerodynamic efficiency [1] 
𝜑𝜑 = 4𝑉̇𝑉/(𝜋𝜋2𝐷𝐷3𝑛𝑛) … dimensionless flow rate [1] 
𝜓𝜓 = 2Δ𝑝𝑝𝑡𝑡/(𝜋𝜋2𝜌𝜌𝐷𝐷2𝑛𝑛2) … dimensionless pressure [1] 
𝑓𝑓 … objective function [.] 
𝑓𝑓 … metamodel  [.] 
γ … distance between turbulator and trailing edge [mm] 
σ … height of the turbulator step [mm] 

 
 

INTRODUCTION 
Small axial fans are frequently used for ventilation in 

noise-sensitive environments. For example, in the IT industry, 
axial fans are utilized for cooling semiconductor equipment. 
Therefore, the reduction of associated noise emission has 
become a criterion of working ergonomics, in order to 
minimize employee hearing loss during long-term exposure. In 
addition, in the automotive industry, the introduction of 
automobiles propelled by electric motors will eliminate noise 
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caused by combustion engines — making other noise sources 
(such as fans associated with the air conditioning system) more 
apparent to passengers. As a third example, in the design of 
energy-efficient housing, controlled ventilation via fans utilizes 
heat exchangers to reduce the carbon dioxide footprint of air- 
conditioning systems. In these industries, the reduction of noise 
emission from axial fans has become an important product 
marketing feature for many applications. To optimize personal 
comfort, many of these applications require exacting control of 
flow rates from axial fans. Hence, fan noise must be reduced 
for a range of off-design behaviors. 

Noise generation is inherently difficult to control by a 
human designer, due to the complexity of the involved physical 
phenomena. For this reason, a simplification of the aeroacoustic 
design process is highly desirable. In a previous paper [26], we 
have demonstrated noise reduction for axial fans via genetic 
optimization of (a) the winglet geometry and (b) the turbulator 
for a fixed-blade geometry. In this paper, we take the approach 
one step further by demonstrating an inverse design 
methodology for the shape of the blades. Because each blade is 
treated individually, all blades of the fan may be loaded 
differently. The optimal blade loading is identified by a genetic 
algorithm. 

This method accepts a number of objectives: the sound 
pressure frequency spectrum, aerodynamic efficiency, pressure 
head and flow rate. Based on multi-objective differential 
evolution, the method will then find the associated blade 
geometry. 

The optimization is carried out for an axial fan with a 
diameter of 150 mm, consisting of seven blades (see Fig. 1) and 
operating at 7200 rpm. This fan is part of the new S-Force 2 
family designed by ebm-papst. 

For the sake of completeness, we will briefly review the 
results of our previous research (for more detailed information, 
refer to [26]): 

Winglet. The winglet geometry represents a helical 
extrusion of the blade in the radial direction of the fan. In terms 
of parametric computer-aided design (CAD), this arrangement 
is obtained by cutting the blade with a cylinder with a diameter 
of 0.8 𝐷𝐷, whose axis coincides with the fan axis 𝜒𝜒 (see Fig. 2). 
Thereby, 𝐷𝐷 represents the outer diameter of the fan. We shall 
denote the resulting cross section by 𝜆𝜆. Subsequently, a second 
cross-section 𝜇𝜇 is created by orthogonal projection of 𝜆𝜆 onto a 
cylindrical surface of diameter 𝐷𝐷 and axis 𝜒𝜒. For successive 
shape optimization, it is convenient to parameterize the 
transformations of 𝜇𝜇 in the following way:  

(1) rotation about the radial axis 𝜉𝜉,  
(2) rotation about the fan axis 𝜒𝜒 and  
(3) translation along 𝜒𝜒.  

The closure of the winglet surface is obtained by a multi-
section extrusion 𝜅𝜅 between sections 𝜆𝜆 and 𝜇𝜇 (thereby enforcing 
𝐶𝐶1 continuity at the interface between the original blade and 𝜅𝜅; 
see Fig. 2).  

 
 
 
 
Fig. 1: Exploded view of the axial fan under investigation. The 
conical winglet design and the shape-optimized turbulator are 
indicated. 
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The optimized winglet geometry shows an interesting 
shape. It bends toward the suction side at the leading edge 
(angle 𝛼𝛼, Fig. 2) and toward the pressure side at the trailing 
edge (angle 𝛽𝛽, Fig. 2). The detailed winglet geometry can be 
observed in sections A to F in Fig. 2. The radius of curvature of 
the winglet varies along the blade. Hence, it resembles a 
number of generalized conical sections.  
 
 
 

 
 
Fig. 2: Sections A-A to G-G (which are aligned normal to axis 
𝜒𝜒), illustrating the conical winglet geometry (only one blade is 
shown). 
 
 

Turbulator. In general, turbulators are used to turn laminar 
flow into turbulent flow. However, turbulators can also be 
utilized to increase the energy of an already turbulent boundary 
layer, thereby moving the point of flow separation further 
downstream. This type of arrangement is used, for example, to 

avoid flow separation upstream of ailerons of commercial 
airliners. 

At the leading edge of the blade, the flow will be laminar. 
After a certain distance, the flow will transition from laminar to 
turbulent. Further downstream (at the flow separation point), 
the turbulent boundary layer will break down due to the large 
positive pressure gradient near the end of the blade. This leads 
to undesirable effects, such as increased generation of noise and 
a reduced cross-sectional area for the flow channel. For off-
design operating points of the fan, the point of flow separation 
travels further upstream, thereby exaggerating these negative 
flow characteristics even more. To avoid this, we have 
proposed a turbulator design as shown in Fig. 1.  

The spine of the turbulator is represented by a B-spline, 
which is projected onto the blade surface. The cross-section of 
the turbulator is described as a simple step. In particular, we 
propose the following parameters:  
(1) offset 𝛾𝛾 of B-spline control points between turbulator and 
trailing edge of the blade and  
(2) height 𝜎𝜎 of the turbulator step.  

This concludes the short review of our previous research. 
With the associated optimal configuration of the fan, the 
minimal sound power level of 82.2 dB was achieved (980 m³/h, 
334 Pa, 7200 rpm, 𝜑𝜑 = 0.277). 

This paper is structured as follows: first we outline the 
concept of differential evolution in order to set up the genetic 
algorithm. Then we illustrate the parameterization of the 
blades, taking into account that each blade is loaded differently. 
Subsequently, we outline the details of the numerical 
simulation. In the next section focusing on inverse design of 
variable blade loading, all components from the previous 
sections are assembled. Since the aeroacoustic analysis 
represents high computational loads, the computational 
environment is an issue in itself, which is outlined in a 
dedicated section. The accuracy of the numerical simulation is 
discussed in the section about the experimental set-up. In the 
final section, we present the results of our optimal load 
distribution for each individual blade, as well as the resulting 
noise reduction delivered by this fan design. 
 
DIFFERENTIAL EVOLUTION 

Evolution Algorithms (EA) have been proposed in the 
seminal papers [11] and [12]. According to Darwinian concepts 
of evolution, populations of individuals evolve over a search 
space, adapting to the environment via the use of different 
strategies such as selection, mutation and crossover. The fitness 
of individuals — which can be represented by evolution 
algorithms — increases their chance to survive and reproduce. 

With regard to design optimization problems, EAs exhibit 
a number of advantages over traditional gradient-based 
methods: 

• the objective function does not need to be continuous, 
• there is an insensitivity to noise caused by the objective 

function (i.e., global minima will be found in the presence 
of local minima) and 
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• EA methods are easily adaptable to parallel computing 
platforms. 

However, EAs involve a large number of function evaluations 
which may be considered a disadvantage. 

Differential Evolution (DE) represents an evolutionary 
method that was developed more recently [13]. Like all EAs, it 
is based on populations which are composed of individuals, 
each of them described by a design vector 𝐱𝐱𝑡𝑡 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) 
for generation 𝑡𝑡, containing 𝑚𝑚 parameters. During each 
generation, the complete population of design vectors must be 
evaluated. 

For the evolution of design vector 𝐱𝐱𝑡𝑡, the processes of 
mutation, recombination and selection are performed 
successively:  

Mutation is performed by randomly choosing three unique 
parameter vectors 𝐚𝐚𝑡𝑡, 𝐛𝐛𝑡𝑡 and 𝐜𝐜𝑡𝑡 according to 𝐚𝐚𝑡𝑡 ≠ 𝐛𝐛𝑡𝑡 ≠ 𝐜𝐜𝑡𝑡 ≠ 𝐱𝐱𝑡𝑡 
to form the new trial vector 
 

𝐲𝐲𝑡𝑡 = 𝐚𝐚𝑡𝑡 + 𝐹𝐹 ∙ (𝐛𝐛𝑡𝑡 − 𝐜𝐜𝑡𝑡) (1) 
 

Thereby, 𝐹𝐹 ∈]0,2[  is a user-specified constant which controls 
the amplification of the differential variation (𝐛𝐛𝑡𝑡 − 𝐜𝐜𝑡𝑡). 

Recombination is the breaking and rejoining of DNA 
strands to encode novel sets of genetic information. 
Mathematically, it may be represented by definition of the 
candidate vector 𝐳𝐳𝑡𝑡 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑚𝑚) as 
 

𝑧𝑧𝑖𝑖 = � 𝑦𝑦𝑖𝑖 if 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶
 𝑥𝑥𝑖𝑖 if 𝑟𝑟𝑖𝑖 > 𝐶𝐶     𝑖𝑖 = 1 …𝑚𝑚 (2) 

 
where 𝑟𝑟𝑖𝑖 is a uniformly distributed random variable (0 ≤ 𝑟𝑟𝑖𝑖 <
1) and 𝐶𝐶 ∈]0,1[ represents a user-defined constant. 

Selection helps to minimize the objective function 𝑓𝑓(𝐱𝐱𝑡𝑡) 
according to 
 

𝐱𝐱𝑡𝑡+1 = �𝐳𝐳𝑡𝑡 if 𝑓𝑓(𝐳𝐳𝑡𝑡) ≤ 𝑓𝑓(𝐱𝐱𝑡𝑡)
 𝐱𝐱𝑡𝑡 if 𝑓𝑓(𝐳𝐳𝑡𝑡) > 𝑓𝑓(𝐱𝐱𝑡𝑡)

 

 
(3) 

The methods described above refer to single-objective 
differential evolution. However, in the context of fan 
optimization, we require the simultaneous optimization of more 
than one objective (e.g., aerodynamic efficiency must be 
optimized along with noise production). Hence, the concepts 
described above must be extended to multi-objective 
differential evolution. This was first introduced in [14] by 
restricting the selection of the individuals 𝐚𝐚𝑡𝑡, 𝐛𝐛𝑡𝑡 and 𝐜𝐜𝑡𝑡 to the 
non-dominated individuals. Hence, 𝐚𝐚𝑡𝑡 ≠ 𝐛𝐛𝑡𝑡 ≠ 𝐜𝐜𝑡𝑡 are required 
to belong to the Pareto front.  

Another approach was described in [15] and [16]: for each 
generation, all newly created individuals generated by mutation 
and recombination are added to the population. Therefore, the 
resulting population is twice as large and is subjected to a non-
dominated ranking procedure. This method selects all non-
dominated individuals, assigns them rank 1 and removes them 
from the population. Successively, the ranking procedure is 

repeated to identify individuals of higher ranks until the whole 
population is ranked. In a final step, the original size of the 
population is obtained by adding individuals from ranks of 
increasing number, starting from rank 1. These strategies form 
the core of NSGA-II [16]. 

A major drawback of the methods described above is the 
large number of objective function evaluations. In particular, 
for aeroacoustic simulations, they may become prohibitively 
expensive. To reduce the computational workload, the 
numerically intensive computations can be replaced by cheaper 
evaluations, or even interpolations between accurately 
evaluated objective functions of individuals. These techniques 
are known as metamodel assisted evolutionary algorithms. A 
metamodel is a function 𝑓𝑓(𝒙𝒙): ℝ𝑢𝑢 → ℝ𝑣𝑣 with a much lower 
computational cost than 𝑓𝑓(𝐱𝐱) such that 
 

�𝑓𝑓(𝐱𝐱) − 𝑓𝑓(𝐱𝐱)� < 𝜖𝜖 (4) 
 

where 𝜖𝜖 is sufficiently small. Metamodels may be categorized 
into on-line and off-line trained metamodels.  

The on-line methods utilize the metamodel for some or all 
of the individuals making up the population. After the ranking 
procedure, the most promising individuals are reevaluated 
using the accurate objective function (for example, see [17] and 
[18]). 

In contrast, the off-line methods use the metamodel during 
the entire evolutionary process. Only at the end of the 
evolution, the most successful individuals are reevaluated using 
the accurate objective function (for example, see [19] and [20]). 
It is beneficial to integrate these individuals into the metamodel 
for subsequent evolutions in order to facilitate self-learning. 

Metamodels may be set up in a number of ways. Among 
them are the  

• Polynomial Response Surface Models (PRSMs),  
• Artificial Neural Networks (ANNs),  
• Radial Basis Function (RBF) networks and  
• Kriging. 

These will be reviewed in more detail in a later section. 
PRSMs aim to represent 𝑓𝑓 by quadratic or cubic 

polynomials (see [21], among others). Hence, an advantage of 
PRSMs is that the minimum may be found by analytical 
derivation and application of the Newton-Raphson method. 
However, polynomial basis functions have proven to be inferior 
in representing 𝑓𝑓 for aerodynamic applications. 

An ANN consists of a network of neurons which are 
arranged in layers: an input layer, one or more hidden layers 
and an output layer. Each element of the input layer is 
connected to each neuron of the first hidden layer. Each of 
these connections is associated with a weight. What 
distinguishes ANNs from regression techniques such as RSM is 
the Kolmogorov Theorem. It states that any continuous 
function 𝑓𝑓(𝒙𝒙): ℝ𝑢𝑢 → ℝ𝑣𝑣  can be represented exactly by a three- 
layer, feed-forward neural network with u elements in the input 
layer, 2𝑢𝑢 + 1 elements in the hidden layer, and v elements in 
the output layer. ANNs were originally developed to imitate 
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brain functions. However, they also represent powerful 
interpolation functions (see [22], among others). Before the 
network can be used for interpolation, it must be exposed to a  
training phase based on error back-propagation. 

RBF networks belong to the same class of interpolators as 
ANNs. However, they have a different architecture and input-
to-output relationship. Each hidden neuron has an m-
dimensional input (as opposed to the 1D weighted sum of the 
input variables for ANNs). 

Kriging (see [24], among others) belongs to the group of 
least-square algorithms, although it reproduces source data 
exactly (i.e., 𝑓𝑓(𝒙𝒙𝑖𝑖) = 𝑓𝑓(𝒙𝒙𝑖𝑖)). In addition to the prediction of the 
objective function, this method also supplies an estimation of 
the error of the prediction. This feature was originally utilized 
in geostatistics. However, recently it has grown in popularity 
for the approximation of deterministic computer models.  

Within this research, we focus on inverse aeroacoustic 
design. This involves the evaluation of numerically expensive 
objective functions based on Lattice-Boltzmann models. Hence, 
for numerical efficiency it is mandatory to augment the 
evolution process with a metamodel. Due to the nonlinearity of 
the problem, the PRSM led to unsatisfactory convergence. For 
the efficient solution of the problem, we have developed an 
NSGA-II based evolution algorithm, augmented with an off-
line trained metamodel, which is supported by a radial basis 
function network. This approach is illustrated in Fig. 3. 
 

 
Fig. 3: Flowchart of the inverse design algorithm. 
 
 

PARAMETERIZATION OF THE BLADE GEOMETRY 
As a general rule, to make the inverse design procedure 

more efficient, a few guidelines should be adhered to: 
• the number of geometric parameters should be minimized 

and 
• the design space should be set up to exclude physically 

impossible designs. 
Based on these guidelines, the individual parts of the fan were 
parameterized. 

For the parameterization of the blade, we describe the 
skeletal surface by sheets of vorticity according to [27]. Their 
strength is determined by a user-specified distribution of 
circumferentially averaged swirl velocity (𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢� ), defined as 
 

𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢� =
𝑁𝑁
2𝜋𝜋

� 𝑟𝑟 ⋅
2𝜋𝜋
𝑁𝑁

0
𝑐𝑐𝑢𝑢𝑑𝑑𝑑𝑑 (5) 

where 𝑁𝑁 is the number of blades, 𝑟𝑟 is the radius, 𝑐𝑐𝑢𝑢 is the 
circumferential velocity component and 𝜃𝜃 is the angular 
coordinate in the cylindrical coordinate system. The blade 
loading is directly related to the meridional derivatives of 𝑟𝑟 ⋅
𝑐𝑐𝑢𝑢� , hence 
 

∆𝑝𝑝 =
2𝜋𝜋
𝑁𝑁
𝜌𝜌𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

𝜕𝜕(𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢� )
𝜕𝜕𝜕𝜕

 (6) 

 
where ∆𝑝𝑝 is the pressure loading on the blade, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  is the 
relative meridional blade surface velocity and 𝜕𝜕𝜕𝜕 refers to a 
derivative in the meridional plane. The blade shape is obtained 
by alignment of its skeletal surface with the local velocity 
vector (i.e., imposing the inviscid slip condition). 
Consequently, the blade shape is controlled by a few parameters 
which define the distribution of 𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢�  across the meridional 
section. This helps to greatly reduce the number of parameters 
describing the blade (as opposed to describing the blade 
geometry directly by a B-spline surface with associated control 
points as parameters). In addition, it precludes many non-
physical blade geometries. (For more details, see [27].) The 
thickness of the blade is defined by a NACA profile. 

 
NUMERICAL SIMULATION 

Numerical simulation of the fluid dynamics was carried out 
mainly in Star-CCM+ V6.04 [2], using its classical Reynolds 
Averaged Navier Stokes (RANS) solver which is based on a 
polyhedral discretization scheme. Turbulent flow was resolved 
using the realizable two-layer k-𝜀𝜀 turbulence model, as well as 
the integrated two-layer all y+ wall model [2]. To resolve the 
fine details of the geometry, a segment of the fan (i.e., 1/7th of 
the full model) was discretized by approximately 1,500,000 
polyhedral and prismatic cells. 

To perform numerical analysis of the acoustic performance 
of the fan, we used the Lattice-Boltzmann code XFlow [1]. It 
represents a proprietary, particle-based, meshless approach  
which aims to solve complex problems on relatively standard 
computer hardware. It features a novel, particle-based, kinetic 
algorithm that resolves both the Boltzmann and the 
compressible Navier-Stokes equations. Furthermore, it provides 
state-of-the-art Large Eddy Simulation (LES) modeling and 
advanced non-equilibrium wall models. These features make it 
attractive for direct acoustic analysis within our optimization 
framework.  

XFlow has been benchmarked for a number of standard 
fluid dynamics problems in [4]. In addition, we have performed 
a series of benchmark analyses for basic engineering  problems 
(cylinder in cross-flow), as well as for axial fans. These results 
were consistent with experimental data (see [5]-[7]). More 
information about the details of the method can be found in our 
recent paper [26]. The geometric model is shown in Fig. 4. 
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Fig. 4: Geometric model for the Lattice-Boltzmann simulation 
showing inlet, outlet, the fan under investigation and the array 
of pressure sensors (the sensors are only shown at the outlet). 

 
 

INVERSE DESIGN OF VARIABLE BLADE LOADING 
At this point, we have introduced all necessary 

prerequisites. We will now assemble these components into an 
inverse design strategy that can effectively be applied to axial 
fans. The objectives are  

• to maximize aerodynamic efficiency (𝑓𝑓1) and 
• to minimize the sound pressure level (𝑓𝑓2).  

 
The objective function for aerodynamic efficiency 
 

𝜂𝜂 =
Δ𝑝𝑝𝑉̇𝑉
𝑀𝑀𝑀𝑀

 (7) 

 
can be written as 
 

𝑓𝑓1 = max(𝜂𝜂). (8) 
 

The second objective function is associated with sound 
pressure. It is written implicitly as a function of frequency by 
involving a number 𝑟𝑟 of selected bands of the sound-pressure 
frequency spectrum. Hence, 
 

𝑓𝑓2 = min �10 log�10�𝐿𝐿𝑝�𝑖−(𝐿𝐿𝐴)𝑖
𝑟𝑟

𝑖𝑖=1

� (9) 

 
Thereby, �𝐿𝐿𝑝𝑝�𝑖𝑖 refers to the sound pressure of the frequency 
band with index 𝑖𝑖, and (𝐿𝐿𝐴𝐴)𝑖𝑖 refers to the associated A-
weighting. This approach helps to control the set of particular 
bands during the inverse design procedure. By choosing the 
band frequencies as multiples of 𝑁𝑁 ⋅ 𝑛𝑛, this enables us to bias 
the objective function for reduction of tonal over broadband 
noise. This distinction is important in many noise-reduction 
applications. 

Tonal noise of an axial fan is considered to be most 
unpleasant to human ears. It is caused by transient pressure 
fluctuations due to the passage of N identical blades. Within the 
sound-pressure frequency spectrum, the blade passing 
frequency of order i is represented by a peak at BPF𝑖𝑖 = 𝑖𝑖 𝑁𝑁 𝑛𝑛. 
Several strategies have been developed to alleviate these peaks, 
most notably the variable angular alignment of blades. This 
alignment spreads acoustic energy over a small spectrum of 
frequencies, and as a result the amplitude of the peaks is 
slightly reduced.  

We choose a different strategy by specifying a fan which 
consists of N differently designed blades. In this case, each flow 
channel constitutes  different flow characteristics. In theory, this 
should help to reduce tonal noise even further. However, 
whether geometrically different blades actually deliver noise-
reduction benefits remains an open question. The answer may 
be found by applying evolution algorithms. 

To set up this evolutionary problem, each of the 𝑁𝑁 blades is 
parameterized individually. In particular, we choose to 
parameterize the averaged swirl velocity 𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢�   at the following 
locations: 

• trailing edge / hub and 
• trailing edge / shroud 

 
At the leading edge, we set 𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢� = 0. Between these locations, 
𝑟𝑟 ⋅ 𝑐𝑐𝑢𝑢�  is interpolated linearly. Consequently, the number of 
parameters describing the problem is 2 ⋅ 𝑁𝑁. 

 
COMPUTATIONAL ENVIRONMENT 

The evolution algorithm requires a large number of 
objective function evaluations. These evaluations are 
numerically expensive, since they involve the solution of the 
Lattice-Boltzmann model. Throughout the inverse design 
procedure, the number of individuals making up the population 
is varied dynamically by the evolution algorithm. These 
requirements cannot be satisfied efficiently by a standard 
computer cluster, since it cannot expand or shrink the available 
resources easily. However, Amazon Elastic Compute Cloud 
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(EC2) [28] is a web service that provides resizable compute 
capacity in the cloud. It enables users to increase or decrease 
capacity within minutes. In contrast, standard cluster services 
may require several days until they can adapt their resources. 
This would not be acceptable during an inverse design run. 
 

 
 
Fig. 5: Structure of parallel computing resources on Amazon 
Elastic Compute Cloud (EC2). 

 
 

EC2 works in conjunction with Amazon Simple Storage 
Service (Amazon S3) and other services to provide a complete 
solution for large-scale computing. The structure for 
incorporating EC2 into the evolution method is illustrated in 
Fig. 5. Both the control algorithm (NSGA-II), as well as the 
evaluation of the metamodel, can be executed on standard 
desktop hardware, since these operations are numerically 
cheap.  

The control algorithm NSGA-II is configured to 
communicate with a web server in the cloud. Whenever it 
determines that an accurate evaluation of an objective function 
is necessary, it passes the associated parameters (including the 
geometry) to the web server. A dedicated request for the 
numerical analysis is put into the request queue. As soon as 
EC2 can provide the necessary computing resources, the 
analysis is initiated in parallel on a number of dedicated CFD 
simulation servers.  

A CFD simulation server is represented by a virtual image 
of an operating system, with associated simulation programs. 
These programs may be run from the web server via a 
command shell. 

During a simulation run, all results remain on the file 
server (Amazon S3). The objective functions are then evaluated 
on the CFD simulation server, and this result is supplied to the 
web server via the response queue. The data generated by a 
Lattice-Boltzmann analysis may reach several gigabytes. 
However, the result of the objective function may only be a few 
floating point values which describe aerodynamic efficiency, as 
well as the individual bands of the sound-pressure frequency 

spectrum. Hence, only very small sets of data need to be 
transferred over the internet between the cloud service and the 
local hardware. This helps to increase the efficiency of the 
computational environment. 

For the present study, we have utilized EC2 cloud 
configurations consisting of 128 CPUs. A total of 300 
geometric configurations were analyzed. The number of 
analyses done in parallel was controlled by NSGA-II, varying 
between 5 and 20. 

EXPERIMENTAL SET-UP 
From experiments, we obtained fan charts and the 

associated sound power levels. To facilitate testing of arbitrary 
configurations, a modular test set-up was designed, consisting 
of the following four fan components: (1) casing, (2) impeller, 
(3) guide vanes and (4) inlet nozzle. Each of these components 
can be changed individually to study its specific influence on 
overall performance. A typical set-up is shown in Fig. 6. The 
components (2)-(4) are made by rapid prototyping. 
 

 
 

Fig. 6: Experimental set-up. 
 

 
The aerodynamic testing rig (see Fig. 7) is a suction side 

throttled facility. When the test set-up is mounted at the exit of 
the testing rig, the air enters the rig through five tubes (see top 
of Fig. 7), each equipped with a flow meter. The air is 
conditioned with screens and gazes to ensure homogeneous 
flow at the fan inlet. An auxiliary fan compensates for the 
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inherent pressure drop throughout the system. Fan charts are 
obtained by recording flow rate, as well as the difference 
between static pressure at the inlet and ambient pressure. 
 

 
 

Fig. 7: Aerodynamic testing rig. 
 

 
 

Fig. 8: Acoustic testing rig. 
The acoustic testing rig (see Fig. 8) operates via throttling 

on the pressure side. The total sound power is computed 
according to ISO 10302, with 10 microphones placed on a 

hemisphere with a diameter of 2 m. (More details about the 
experimental set-up can be found in [3].) 

RESULTS 
To conclude the study, we describe the optimal parameter 

set obtained from the evolution algorithm. In addition, we 
illustrate the agreement between the results of the LBM 
simulation and  physical tests. Finally, the improved 
performance of the fan due to the design optimization is 
documented. 

Optimal parameter set. Since we have posed a multi-
objective optimization problem (minimize sound-pressure 
levels while maximizing aerodynamic efficiency), the evolution 
algorithm produces a complete Pareto front of optimal designs. 
Clearly, the Pareto front is discontinuous. This may be caused 
by the nonlinear effects which appear at the guide vanes for 
increasing the variation in blade loading (i.e., neutral guide 
vanes suddenly become aerodynamically active for certain flow 
channels of the fan).  

The entire population of individuals included in the 
optimization process is depicted in Fig. 9. The convergence of 
the proposed cooperation between NSGA-II and the radial basis 
function metamodel seems satisfactory, which is illustrated by 
the density gradient of dots shown in Fig. 9. To start the 
evolution, an initial parameter set was chosen which describes 
the fan developed in our recent paper [26], whose blades have 
identical geometry. Hence, the evolution began at a level of 
optimization that was already high. 
 

 
 
Fig. 9: Population of individuals chosen for evaluation by the 
NSGA-II algorithm. The Pareto front of optimal designs is 
discontinuous. Three individuals — P1, P2 and P3 — are 
chosen for subsequent study. 

 
From the Pareto set of optimal designs, we have chosen to 

physically build one of them for further analysis. The individual 
was chosen from the center of the Pareto optimal solutions (see 
the black dot denoted by P1 in Fig. 9). The associated solution 
parameters for three individuals — P1, P2 and P3 — are shown 
in Fig. 10.  

 8 Copyright © 2013 by ASME 



Spatial distribution of noise, based on LBM simulation.   
The emission of fan noise is not distributed uniformly around 
the fan. Hence, to study noise-generation phenomena, it makes 
sense to investigate the spatial distribution of noise sources. 
Otherwise, interesting effects might be hidden or obscured due 
to integration over the whole domain. 
 

 
 
Fig. 10: Parameters for three selected individuals of the Pareto 
front. Individual P1 was selected from the center of the Pareto 
front in Fig. 9. The individuals P2 (aerodynamic efficiency 
more important than noise reduction) and P3 (noise reduction 
more important than aerodynamic efficiency) were selected 
from the peripheral regions of the Pareto front. 

 
From the LBM simulation, we obtain the pressure 

distribution over time for a number of sensors (which are 
shown in Fig. 4). Via Fast Fourier Transform (FFT), the 
pressure data is converted to the frequency domain. For one of 
the sensors, the sound pressure level is shown in Fig. 11. It 
compares the fan of identical blade geometry (blue) to the fan 
of varying blade geometry (red). Clearly, for the fan with 
identical blade geometry, there are a number of blade-passing 
frequencies, represented by peaks. For the fan with varying 
blade geometry, these peaks are almost absent. Hence, tonal 
noise is reduced effectively by the evolution algorithm. 
However, it should be noted that the data shown in Fig. 11 
represents an extreme example (for sensors at different 

locations, the difference between the two fan designs is less 
pronounced). 
 

 
 
Fig. 11: Typical frequency spectrum of sound-pressure levels 
obtained from the Lattice-Boltzmann simulation for one of the 
sensors at the outlet. Blade-passing frequencies (BPF) up to 
order three are indicated. 

 
 

Accuracy of the aeroacoustic simulation. To illustrate the 
accuracy of the numerical simulation, we show the frequency 
spectrum of emitted noise as 1/3-octave bands for the optimized 
fan design with varying blade geometry, operating at the design 
point. Then we compare this with tests on a physical specimen 
of the same fan. The overall agreement between simulation and 
physical test is within ±2dB for most of the bands (see Fig. 
12). This is satisfactory for the present application. 

There are a few interesting results to discuss. For example, 
the peak at BPF1 is clearly visible in the frequency spectrum for 
both the physical test and the numerical simulation (see the 800 
Hz band in Fig. 12).  

In contrast, for the physical test, another peak is observed 
at the rotational frequency 𝑅𝑅𝑅𝑅 = 7200/60 = 120 Hz which 
cannot be observed in the simulation. This peak is attributed to 
imperfect rotordynamics or eccentricity of the individual fan. 
The absence of this peak in the numerical simulation represents 
an advantage, since the frequency spectrum (and consequently, 
the objective function for the evolution algorithm) is not tainted 
by effects that are unrelated to aerodynamics. If such effects 
were included in the analysis, the evolution algorithm would be 
misguided. 

Improvement over identical blade geometry. We 
compare two physical fan specimens: (1) the fan with identical 
blade geometry (developed in [26]) and (2) the fan with varying 
blade geometry (developed in the present paper). The frequency 
spectrum of fan noise is shown as 1/3-octave bands for the two 
fans in Fig. 13.  

A few interesting aspects are visible: clearly, the peak at 
the first order blade-passing frequency BPF1 = 7200/60 ∗ 7 =
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840 Hz is lower, and acoustic energy is distributed to adjacent 
frequencies (see circle 1 in Fig. 13). Furthermore, the peak at 
the second order blade-passing frequency BPF2 = 2 ∗ BPF1 =
1680 Hz has almost disappeared (see circle 2 in Fig. 13). We 
also note that broadband noise is slightly reduced for the 
varying blade geometry. The total reduction of sound power 
level is 1.3 dB(A). 
 

 
Fig. 12: Comparison between physical test and simulation for 
the fan with varying blade geometry. The frequency spectrum of 
fan noise is shown as 1/3-octave bands for the optimized fan  
operating at the design point. Measurements for a physical test 
(red) are compared with results from a numerical simulation 
(green) based on direct acoustic analysis via the Lattice-
Boltzmann method. The time resolution of the simulation was 
∆𝑡𝑡 = 10−4 𝑠𝑠. Hence, in accordance with the Nyquist-Shannon 
sampling theorem, numerical results are limited up to a 
frequency of 5000 Hz. The peak for the physical test at 125 Hz 
is attributed to the eccentricity of the individual fan and 
therefore cannot be observed in the simulation. 

  
 
 

  

 
Fig. 13: Comparison of two physical specimens: The frequency 
spectrum of fan noise is shown as 1/3-octave bands for the fan 
with identical blades (blue) and for the fan with varying blade 
geometry (red). Clearly, the peak at BPF1 is reduced and 
acoustic energy is distributed to adjacent frequencies (circle 1). 
The peak at BPF2 has almost disappeared (circle 2). The 
overall reduction in sound power level is 1.3 dB(A). 
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