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ABSTRACT 
Contra-rotating fans have several advantages over single 

stage axial fans. If they are well designed, the exit flow field is 
almost irrotational. This helps to increase the aerodynamic 
efficiency by up to 16%, when compared to single stage fans. 
However, since the second stage interacts with the flow 
disturbances from the first stage, the associated noise generation 
is a disadvantage. This may be remedied by carefully tuning the 
design.  

The optimization of a contra-rotating fan involves a large 
set of design parameters. These include the geometrical 
parameters of the fan blades, the winglets, the guide vane as well 
as the hub diameter. We demonstrate an evolutionary algorithm 
which helps to automate the optimization process. It is controlled 
by two objective functions: (1) aerodynamic efficiency and (2) 
the emitted tonal noise.  

For the evaluation of the sound pressure, we implemented a 
new lattice-Boltzmann solver. Due to its algorithmic structure, 
this is ideally suited for massive parallelization. To leverage this 
potential, it is designed to run on general-purpose graphics 
processing units (GPGPUs). To further accelerate the 
optimization, it is supported by a meta-model based on a radial-
basis function network.  

We demonstrate the method for a small contra-rotating fan. 
Our numerical results are compared with physical tests. The new 
algorithmic arrangement has shown to drastically cut 
development costs and time. 

 
 

INTRODUCTION 
Contra-rotating fans are used for high-performance 

applications. They are able to deliver more airflow and higher 
static pressure than two conventional fans of the same size in 
serial configuration. However, their most important 
disadvantage is noise generation. The flow disturbances caused 
by the first stage interact with the second stage and they are 
responsible for numerous tonal noise generation phenomena. 
The major contributors are the tip-leakage-vortex and the tip-

separation-vortex of the first-stage rotor. These in turn may lead 
to flow separation on the guide vane and on the second-stage 
rotor. We aim to reduce these disadvantages by numerical 
optimization. 

For the present fan under investigation, the multi-objective 
optimization problem is governed by two objective functions:  

 
1. maximization of aerodynamic efficiency (Eq. 1) and  
2. minimization of the emitted tonal sound pressure within 

the frequency spectrum below 3 kHz (Eq. 2).  
 

The associated objective functions, then, may be written as 
ଵݍ  = max ቆ Δ୲୭୲ ሶܸଵܶ߱ଵ + ଶܶ߱ଶቇ (1) 

ଶݍ  = min   ൭න ୮ܮ ݂݀౨ౢ ೕା/ଶ
౨ౢ ೕି/ଶ ൱ଷ

ୀ
ଷ

ୀ  

 

(2) 

Note that the double sum in Eq. 2 conveniently selects discrete 
frequency bands (bandwidth ܽ = 30 Hz, centered on ୰݂ୣ୪ , see 
the grey shaded bands in Fig. 11) for minimization. Therein, ୰݂ୣ୪  = ݅ ⋅ BPFଵ + ݆ ⋅ BPFଶ is the relative interaction frequency 
of order ݅ and ݆ (i.e. any combination of the blade passing 
frequencies BPFଵ and BPFଶ up to order three). During 
optimization this helps minimize the tonal noise at the individual 
blade passing frequencies as well as the relative interaction 
frequencies.  

For the optimization of the fan we parameterize the 
following aspects: 

 
1. shape of the blades and guide vanes,  
2. winglet geometry, 
3. number of blades for the second-stage rotor, 
4. axial position of the blades, 
5. diameter of the hub and 
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6. ratio of rotational speeds ߞ = ݊ଵ/݊ଶ. 
 

Considering the large set of parameters, it becomes clear 
that a human designer may not easily find the optimal 
configuration. Hence we propose to instead utilize an 
evolutionary optimization algorithm. This conveniently delivers 
the set of optimal configurations along the Pareto front, from 
which designers can choose according to their preference 
regarding the two objectives. Similar optimizations of contra 
rotating fans (although for different objective functions) were 
performed recently in [1] and [2]. 

For a reliable and unbiased aeroacoustic prediction of flow 
phenomena, a Large Eddy Simulation (LES) is required. This 
method is numerically  more expensive than standard Reynolds 
Averaged Navier-Stokes (RANS) simulations. Various 
alternative aeroacoustic prediction methods for axial fans were 
discussed, for example, in [3]. However, none of them comes 
close to the fidelity of LES. 

During evolutionary optimization, the objective function for 
aeroacoustic noise (i.e. Eq. 2) must be evaluated repeatedly. 
Hence the involved computational effort may become 
prohibitively expensive. To overcome this obstacle, we have 
presented a solution in our previous papers [4] and [5] using the 
lattice-Boltzmann method (LBM) (see, for example, [6]) on 
parallel configurations on the clusters of Amazon Elastic 
Compute Cloud (using Intel Xeon CPUs). However, in this 
publication we aim to improve the numerical efficiency of the 
method even further by making use of an alternative 
computational hardware. To further motivate our choice of 
hardware, we need to understand the algorithmic structure of the 
LBM in more detail: The numerical solution of the lattice 
Boltzmann transport equation can be split into two steps: (a) the 
collision and (b) the streaming step. Most of the computational 
work for LBM simulations comes from the collision step. Owing 
to the point-like nature of the interparticle collisions, this 
operation is completely local in configuration space. This means 
that different portions of physical space can be advanced 
concurrently, making it ideal for parallel computing [6]. Hence 
the LBM is an ideal candidate for parallelization on GPGPU- 
based stream processors. Even standard commodity GPGPU 
hardware nowadays provides 4096 compute cores at clock 
frequencies of 1 GHz (e.g. AMD 7990).  

When comparing parallel codes that are optimized for 
GPGPUs with serial codes on a conventional CPU, speed 
increases by two orders of magnitude were observed on similar 
equipment [7]. These higher speeds make GPGPUs extremely 
attractive for the LBM. It should be noted, however, that these 
figures refer to computations carried out in the GPGPU’s on-
board memory. If the memory on the computer’s main board 
must be accessed, the simulation is considerably slower. It is 
therefore vital to reduce this type of memory access as far as 
possible. 

In this paper we demonstrate the entire optimization strategy 
for a contra-rotating fan of diameter 115 mm. The fan’s first 
stage consists of five blades, the second stage of a variable 
number of blades (see Fig. 1). To reduce tip losses, the blades are 

fitted with winglets. The guide vanes are positioned between the 
two rotor stages. The fan is optimized for two distinct operating 
points: (1) ߮ = 0.19, ߰ = 0.45 and (2) ߮ = 0.21, ߰ = 0.56. 
Here aeroacoustic optimization is important only for the first 
operating point. The second operating point is the emergency 
operation in case of failure of one or more fans in the plant. For 
this mode the noise level is not important. The axial dimension 
of the complete fan is constrained to 83 mm.  

The remaining paper is structured as follows: in the 
following section we introduce the parameterization of the fan 
geometry. Subsequently we present the LBM with brief 
references to implementation details for the GPGPU-based 
stream processor. To validate the LBM code it is benchmarked 
with two reference solutions. We then outline the optimization 
procedure. Our simulations are backed up by tests on physical 
specimens. The details of the testing facilities are briefly outlined 
in the next section. Finally we present the resulting optimal 
design of the contra-rotating fan. The paper concludes with an 
evaluation of the numerical efficiency of the presented 
optimization technique. 

 
 
Fig. 1: The contra rotating fan to be optimized. The first-stage rotor is 
shown in red, the second-stage rotor in blue and the guide vanes in grey. 

 
PARAMETERIZATION OF THE FAN GEOMETRY 

In this section we outline the methods for parameterizing 
individual parts of an axial fan. 

To make the inverse design procedure more efficient, a few 
general rules should be adhered to: 

• the number of geometrical parameters should be mini-
mized, 
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• the design space should be set up to exclude physically 
impossible designs.  

 
Blade and guide vane.  For the parameterization of blade 

and guide vane, we describe the skeletal surface by sheets of 
vorticity according to [8]. Their strength is determined by a user- 
specified distribution of circumferentially averaged swirl (ݎ ⋅ܿ୳ഥ ), defined as 
ݎ  ⋅ ܿ୳ഥ = ߨ2ܰ න ݎ ⋅ଶగே ܿ୳݀(3) ߠ 

 
where ܰ is the number of blades, ݎ the radius, ܿ௨ the 
circumferential velocity component and ߠ the angular coordinate 
in the cylindrical coordinate system. Blade loading is directly 
related to the meridional derivatives of ݎ ⋅ ܿ௨ഥ , hence 
ୱ୲ୟ୲∆  = − ߨ2ܰ ୫ୠ୪ݓߩ ݎ)߲ ⋅ ܿ୳ഥ )߲߯  (4) 

 where ∆ୱ୲ୟ୲ is the pressure loading on the blade, ݓ୫ୠ୪ the 
relative meridional blade surface velocity and ߲߯ refers to a 
derivative along ߯ (see Fig. 2) in the meridional plane. 

The blade shape is obtained by alignment of its skeletal 
surface with the local velocity vector (i.e. imposing the inviscid 
slip condition). Consequently, the blade shape is controlled by 
only two parameters (i.e. ݎ ⋅ ܿ୳ഥ  at the hub and at the shroud 
section of the trailing edge). This defines the distribution of ݎ ⋅ܿ୳ഥ  across the meridional section. It helps to greatly reduce the 
number of parameters describing the blade (as opposed to 
describing the blade geometry directly by a B-spline surface with 
associated control points as parameters). In addition, it precludes 
many non-physical blade geometries. For more details, see [8]. 
The thickness of the blade is defined by a NACA profile. 

 
Winglet.  The winglet geometry represents a helical 

extrusion of the blade in the radial direction of the fan. In terms 
of parametric CAD, this arrangement is obtained by cutting the 
blade with a cylinder of diameter 0.8 ⋅  whose axis coincides ܦ
with the fan axis ߯ (see Fig. 2). ܦ represents the outer diameter 
of the fan. We shall denote the resulting cross section by ߣ. 
Subsequently a second cross section ߤ is created by orthogonal 
projection of ߣ onto a cylindrical surface of diameter ܦ and axis ߯. For successive shape optimization, it is convenient to 
parameterize the transformations of ߤ as follows:  

 
(1) rotation about the radial axis ߦ,  
(2) rotation about the fan axis ߯ and  
(3) translation along ߯.  

 
The closure of the winglet surface is obtained by a multi-section 
extrusion ߢ between sections ߣ and ߤ (thereby enforcing ܥଵ 
continuity at the interface between the original blade and ߢ, see 
Fig. 2).  

The winglet geometry shows an interesting shape: It curves 
towards the suction side at the leading edge (angle ߙ, Fig. 2) and 
towards the pressure side at the trailing edge (angle ߚ, Fig. 2). 
The detailed winglet geometry can be seen in sections A to F in 
Fig. 2). The curvature radius of the winglet varies along the 
blade, so that it resembles a number of generalized conical 
sections. 

 

 
 

Fig. 2: Axis normal sections A-A to G-G illustrating the conical winglet 
geometry (only one blade shown). 

 
LATTICE-BOLTZMANN METHOD 

Several numerical strategies for assessing the aeroacoustic 
properties of an axial fan were compared in [3]. These included 
Large Eddy Simulation (LES), Detached Eddy Simulation 
(DES), Scale Adaptive Simulation (SAS) and Unsteady 
Reynolds Averaged Navier Stokes (URANS) simulation. SAS  is 
an improved URANS method which introduces the Kármán 
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length scale into the turbulence scale equation and then 
dynamically adjusts the turbulence model as a function of the 
flow field [9]. Clearly, only LES was able to reliably predict the 
aeroacoustic noise of the fan. To evaluate the aeroacoustic 
performance of the fan under investigation in the present study, 
an unsteady LES solution is therefore required. This could 
theoretically be achieved with the Navier-Stokes (NS) equation 
or the LBM. The computational philosophies behind these 
strategies are vastly different: While the LBM leads to very 
simple, explicit and frequent calculations at each node, the NS-
based calculation at each node is complex, implicit and occurs 
less frequently. At first glance, it would appear that the advantage 
achieved by the LBM due to the simplicity of the calculation 
would be offset by the higher frequency of computations, 
rendering the two methods equal. However, this is not the case. 
What sets the two methods apart is the locality of the calculations 
at each node. The LBM scheme leads to calculations that are not 
only simple but also involve only local interactions. 

In the NS method, global interactions play a major role, 
resulting in a severe communication penalty and a marked 
reduction of computational speed. This difference becomes even 
more significant when computations are performed on multi-
processor parallel platforms. The NS-based computations 
typically scale poorly with an increase in the number of 
processors. The LBM computations, on the other hand, exhibit 
excellent scalability characteristics.  

For an efficient evaluation of the aeroacoustic objective 
functions during the optimization, we have implemented the 
LBM to run on a cluster of GPGPUs. According to the notation 
of Qian, the code uses the D2Q9 and D3Q19 lattices [10]. For an 
efficient discretization, a hierarchical mesh structure is employed 
according to [11] and [12]. To represent the effects of unresolved 
small-scale fluid motions, the Smagorinsky subgrid model is 
utilized [13]. For the algorithmic implementation on the 
GPGPU, the OpenCL [14] application programming interface 
was chosen. 

 
VALIDATION OF THE LBM CODE 

In this section, the GPGPU lattice Boltzmann 
implementation is validated by using two standard benchmark 
problems. We consider (a) a lid-driven cavity flow [15] and 
(b) the flow around a circular cylinder [16]. Note that the 
Reynolds numbers of these examples are lower than for the fan 
to be optimized. Hence, they may not be able to represent the 
flow characteristics observed for the fan. 

Lid-driven cavity.  This classical benchmark problem 
consists of a cavity, where the upper boundary moves at ݑ =1 m/s to the right, which causes a vortex in the cavity. The side 
and bottom walls of the cavity are no-slip walls. The geometrical 
dimensions of the cavity are ܮ × ܮ = 1 m × 1 m. The case is set 
up for ܴ݁ = ݑ ⋅ ߥ/ܮ = 1000 with fluid properties ߩ = 1 kg/mଷ 
and ߥ = 0.001 mଶ/s. To study mesh dependency, the domain is 
discretized by 128 × 128, 256 × 256 and 512 × 512 lattice 
cells. For the associated simulations, we compare the vorticity ߱ = ݔ߲/ݒ߲ −  to a reference solution [15] at various ݕ߲/ݑ߲

locations ݕ along the vertical axis of symmetry (see Table 1). The 
flow field is illustrated by streamlines in Fig. 3. 
 
 

 
 

Fig. 3: Validation of the LBM code: lid-driven cavity flow with 
Re=1000. The top wall moves at 1 m/s. The other walls are no-slip walls. 
The flow field is illustrated by streamlines. 

 
128 ݕ  × 128 256 × 256 512 × 512 Ref. 

[15] 

0.9688 9.5243 9.1243 9.4311 9.4781 

0.7344 2.1014 2.0910 2.0952 2.0909 

0.5 2.0784 2.0694 2.0783 2.0699 

0.2813 2.2763 2.2623 2.2671 2.2678 

0.0625 -2.3274 -2.3049 -2.3180 -2.3174 
 
Table 1: Benchmark results for the lid-driven cavity problem. Reference 
values of vorticity (which are evaluated at various locations ݕ along the 
vertical center line) are compared to results of different discretizations 
of the cavity. 
 

Flow around a circular cylinder.  This benchmark problem 
considers a cylinder, positioned asymmetrically in a channel (see 
Fig. 4). The inlet boundary to the left is a parabolic velocity 
profile. The Reynolds number is defined by ܴ݁ = തݑ ⋅  ,ߥ/ܦ
where ܦ is the diameter of the cylinder, ߥ is the kinematic 
viscosity and ݑത = 2/3 ⋅   .୫ୟ୶ is the average velocity at the inletݑ

The simulation is carried out for ܴ݁ = 100 where periodic 
vortex shedding is expected. The vorticity of the resulting 
Kármán vortex street is depicted in Fig. 4. 
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The Strouhal number is defined as ܵݐ = ݂ ⋅  ത, where ݂ isݑ/ܦ
the frequency of vortex shedding. The drag and lift coefficients 
are defined as 

 ܿୢ = ܦതଶݑߩܨ2ୢ    and   ܿ୪ =  (5) ܦതଶݑߩ୪ܨ2

 
where ୢܨ  and ܨ୪ denote the drag and lift force, respectively. The 
maxima of these coefficients are compared to reference values in 
Table 2. 
 

 ܿୢ ܿ୪ ܵݐ
New LBM code 3.25 0.98 0.3 

Ref. [16] 3.22–3.24 0.99–1.01 0.295–0.305 
 
Table 2: Reference values of drag coefficient ܿௗ, lift coefficient ܿ and 
Strouhal number ܵݐ compared to results of our LBM code for a flow 
behind a circular cylinder at Re=100. Resolution: 1376 × 256 lattice 
cells. 

 
DIFFERENTIAL EVOLUTION 

Evolution Algorithms (EA) have been proposed in the 
seminal papers [17] and [18]. Based on Darwinian evolution, 
populations of individuals evolve over a search space and adapt 
to the environment by the use of different strategies such as 
selection, mutation and crossover. The fitness of individuals 
increases their chance of survival and reproduction. 

With regard to design optimization problems, EAs exhibit a 
number of advantages over traditional gradient-based methods: 

• the objective function does not need to be continuous, 
• they are insensitive to noise of the objective function (i.e. 

global minima will be found in the presence of local 
minima), 

• they are easily adaptable to parallel computing platforms. 
However, EAs involve a large number of function evaluations, 
which may be considered a disadvantage. 

Differential Evolution (DE) represents an evolutionary 
method that was developed more recently. Like all EAs, it is 
based on populations made up of individuals, each of them 
described by a design vector ࢞௧ = ,ଵݔ) ,ଶݔ … ,  ) for generationݔ

 containing ݉ parameters. During each generation, the ,ݐ
complete population of design vectors must be evaluated. 

For the evolution of design vector ࢞௧, the processes of 
mutation, recombination and selection are performed 
successively:  

Mutation is performed by randomly choosing three unique 
parameter vectors ࢇ௧, ௧ࢇ ௧ according toࢉ ௧ and࢈ ≠ ௧࢈ ≠ ௧ࢉ ≠  ௧࢞
to form the new trial vector 
௧࢟  = ௧ࢇ + ܨ ∙ ௧࢈) −  ௧) (6)ࢉ
 
Thereby, ܨ ∈]0,2[  is a user specified constant which controls 
the amplification of the differential variation (࢈௧ −  .(௧ࢉ

Recombination is the breaking and rejoining of DNA strands 
to encode novel sets of genetic information. Mathematically it 
may be represented by definition of candidate vector ࢠ௧ 
ݖ  = ൜ ݕ if ݎ ≤ ݔܥ if ݎ > ܥ     ݅ = 1 … ݉ (7) 

 
where ݎ is a uniformly distributed random variable (0 ≤ ݎ < 1) 
and ܥ ∈]0,1[ represents a user defined constant. 

Finally, the selection process helps minimize objective 
function ݍ(࢞௧) according to 
௧ାଵݔ  = ൜ ࢠ if (ࢠ)ݍ ≤ ௧࢞(௧࢞)ݍ if (ࢠ)ݍ >  (௧࢞)ݍ

 
(8) 

The methods described above refer to single-objective 
differential evolution. However, in the context of fan 
optimization, we require the simultaneous optimization of more 
than one objective (e.g. aerodynamic efficiency and tonal noise). 
The concepts described above must therefore be extended to 
multi-objective differential evolution. This was first introduced 
in [19] by restricting the selection of individuals ࢇ௧,  ௧ toࢉ ௧ and࢈
the non-dominated individuals. Hence, ࢇ௧ ≠ ௧࢈ ≠  ௧ areࢉ
required to belong to the Pareto front.  

Another approach was described in [20] and [21]: for each 
generation, all newly created individuals generated by mutation 
and recombination are added to the population. Hence the 
resulting population is twice as large and is subjected to a non-
dominated ranking procedure. It selects all non-dominated 

Fig. 4: Validation of the LBM code: flow around a circular cylinder, positioned asymmetrically in a channel, at Reynolds number ܴ ݁ = 100. Resolution: 1376 × 256 lattice cells. The vorticity of the flow field is visualized. Results are compared to a reference solution in Table 2. 
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individuals, assigns them the rank 1 and removes them from the 
population. The ranking procedure is repeated successively to 
identify individuals of higher ranks until the whole population is 
ranked. In a final step the original size of the population is 
obtained by adding individuals from ranks of increasing number, 
starting at rank 1. These strategies form the core of NSGA-II 
[21]. 

A major drawback of the methods described above is the 
large number of objective function evaluations. In particular for 
aeroacoustic simulations they may become prohibitively 
expensive. To reduce the computational workload, the expensive 
computations can be replaced by cheaper evaluations or even 
interpolations between accurately evaluated objective functions 
of individuals. These techniques are known as meta model 
assisted evolutionary algorithms. A meta model is a function ݍ(࢞): ℝ௨ → ℝ௩ with a much lower computational cost than (࢞)ݍ 
such that 
(࢞)ݍ‖  − ‖(࢞)ݍ < ߳ (9) 

 
where ߳ is sufficiently small. Meta models may be categorized 
into on-line and off-line trained metamodels.  
 

 
 
Fig. 5: Flowchart of the optimization algorithm. To facilitate self 
learning of the meta model, the evaluated objective functions are 
integrated into its data set (grey dashed path). 

 
The on-line methods utilize the metamodel for some or all 

of the individuals making up the population. After the ranking 
procedure, the most promising individuals are reevaluated using 
the accurate objective function (see, for example [22] and [23]). 

In contrast, the off-line methods use the metamodel during 
the entire evolutionary process. Only at the end of the evolution 
are the most successful individuals reevaluated using the 
accurate objective function (see, for example [24] and [25]). It is 

beneficial to integrate these individuals into the metamodel for 
subsequent evolutions in order to facilitate self learning. 

Metamodels may be set up in a number of ways, including 
the  

• Polynomial Response Surface Model (PRSM),  
• Multi Layer Perceptron (MLP),  
• Radial Basis Function networks (RBF) and  
• Kriging. 

For more information about these models, see our recent 
publication [5].  

The evaluation of objective 2 (Eq. 2) is computationally 
very expensive. To solve the given optimization problem 
efficiently, we have therefore developed an NSGA-II based 
evolution algorithm, augmented with an off-line trained 
metamodel, which is supported by a radial basis function 
network. The metamodel helped to significantly cut the number 
of required aeroacoustic analyses. The algorithmic structure is 
illustrated in Fig. 5. 

SIMULATION 
For each of the modified fan geometries, the rotational 

speeds ݊ଵ and ݊ଶ associated with operating point 1 are different. 
They can be identified quickly by RANS (using Star-CCM+ 
[26]). However, it would be very inefficient to use the LBM for 
this purpose (due to its transient nature it can not quickly advance 
to the quasi-steady-state solution of operating point 1). 
Subsequently, the RANS solution is used to initialize an 
URANS. These results in turn help to initialize the LBM. With 
this algorithmic arrangement, the aeroacoustic performance of 
the fan at operating point 1 can be evaluated efficiently (thereby 
skipping the transient startup which is irrelevant to the 
optimization). 

The control volume for the simulation is a sphere of radius 
1 m. It captures all details of the fan including the tip gaps. For 
enhanced efficiency of the LBM simulation, a hierarchical grid 
consisting of five levels was utilized. For each simulation, 30 
rotations of the fan were computed. 

To obtain sound pressure data up to a frequency of 3 kHz, 
the time step was chosen as Δݐୡ = 1.7 ⋅ 10ିସ s for the coarsest 
grid to satisfy the Nyquist-Shannon sampling theorem. Due to 
acoustic scaling [12] this translates to a time step of Δݐ = 1.04 ⋅10ିହ s for the finest grid. 

For the evolutionary optimization we used 20 generations 
(each consisting of a population of 60 individuals, where 40 
individuals were computed using the meta model). 

To investigate the performance of our LBM code we 
consider the number of node updates per second (NUPS). Since 
OpenCL is available also for CPUs, we are able to directly 
compare the performance to the GPGPU implementation. For the 
benchmark problems described above, we obtained a number of 11.4 ⋅ 10 NUPS for the CPU (Intel Core i7, 2.4 GHz, 4 threads), 
while the GPGPU implementation scored a number of 930.26 ⋅10 NUPS (on a single GPGPU, 1.0 GHz, 4096 threads).  

Due to memory requirements, the optimization of the 
contra-rotating fan had to be carried out on a cluster of GPGPUs. 
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The communication between these individual processors 
significantly degraded the performance down to 138.30 ⋅ 10 
NUPS per GPGPU (largely depending on the nature of the 
problem). To control the optimization the mathematical model 
was realized using the software Mathematica. 

EXPERIMENTAL SET-UP 
From experiments we obtain fan charts and the sound power 

level. To facilitate testing of arbitrary configurations, a modular 
test set-up consisting of the following five fan components was 
designed: (1) casing 1, (2) rotor 1, (3) rotor 2 and (4) casing 2 
and (5) guide vanes. Each of these components can be changed 
individually to study its particular influence on the overall 
performance. Components (1)–(4) are made by rapid 
prototyping. The guide vanes are milled from aluminum. 

The aerodynamics test rig (see Fig. 6) is a suction-side 
throttled facility. With the test set-up mounted at the exit of the 
test rig, the air enters the rig through five tubes (see top of Fig. 
6), each equipped with a flow meter. The air is conditioned with 
screens and gazes to ensure homogeneous flow at the fan inlet. 
The inherent pressure drop throughout the system is 
compensated for by an auxiliary fan. Fan charts are obtained by 
recording volume flux as well as the difference between static 
pressure at the inlet and ambient pressure. 

The acoustics test rig (see Fig. 7) operates by throttling on 
the pressure side. The total sound power is computed according 
to ISO 10302, with ten microphones placed on a hemisphere with 
a diameter of 2 m. Further details about the experimental set-up 
can be found in [27]. 

RESULTS 
For the present fan design, the two objectives of 

(a) efficiency and (b) emitted sound pressure were equally 
important. To deliver a well-balanced product, the resulting fan 
design was therefore chosen from the center of the Pareto front 
(see Fig. 9). For operating point 1, the chosen fan design has a 
static aerodynamic efficiency of ߟୱ୲ୟ୲ = Δୱ୲ୟ୲ ሶܸ /( ଵܶ߱ଵ +ଶܶ߱ଶ) = 66%. The total aerodynamic efficiency is ߟ୲୭୲ =Δ୲୭୲ ሶܸ /( ଵܶ߱ଵ + ଶܶ߱ଶ) = 76% (Δୱ୲ୟ୲ and Δ୲୭୲ are the static 
and the total pressure difference). For operating point 2 we 
obtain efficiencies of about 0.3% below these values. For a fan 
of this size, these results are very satisfactory.  

At rotor tip, the Reynolds numbers are of the order of Re୲ ଵ = 93000 and Re୲ ଶ = 71000. The Mach-number for both 
rotors is ܯ = 0.08. To characterize the chosen Pareto optimal 
fan design in more detail, we assess several aspects for operating 
point 1 below. 

Vortex structure.    By studying the vortex structure in the 
downstream flow field we obtain information about the 
generation, evolution, interaction and decay of vortical structures 
including associated noise production mechanisms. For 
identification of these structures the vorticity ߱ = |∇ ×  alone |ܝ
is not suitable since it cannot distinguish between pure shearing 
motions and the actual swirling motion of a vortex [28]. This 
property of vorticity would lead to a misrepresentation of the 

vortex geometry. Instead we utilize the Q-criterion ܳ =((∇ ⋅ ଶ(ܝ − tr(∇ܝଶ))/2, which identifies vortices as flow 
regions with positive second invariant of the velocity gradient 
tensor ∇ܝ (see, for example, [29] or [30]).  

 

 

Fig. 6: Aerodynamics test rig. 

 
Fig. 7: Acoustics test rig. 
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The resulting isosurface is displayed for Q-criterion ܳ =20,000, which is colored by the local vorticity (see Fig. 10). It 
shows the generation of tip vortices in the first-stage rotor (Fig. 
10, item 1) as well as their interaction with the guide vanes (Fig. 
10, item 2) and with the second-stage rotor (Fig. 10, item 3). The 
latter is the source of peaks in the acoustic frequency spectrum 
at the relative interaction frequencies (see Fig. 11).   

 

 
 
Fig. 9: Objective space for optimization, showing the evolution of the 
population. Generations G5 to G20 are shown in distinct colors. The 
Pareto front is shown as a black dashed line. The optimum candidate 
chosen for the final product is indicated by a red star symbol. The sound 
pressure level is given relative to a fixed reference (see also Fig. 11). 

Tangential velocity.   Any non-axial flow component in the 
exit flow field represents an energy loss. For a high-efficiency 
design of the fan, the tangential velocity at the outlet should 

therefore be as small as possible. The visualization clearly 
indicates the absence of any tangential large scale vortices in the 
downstream flow field (Fig. 10, item 4). In particular, results 
show that the maximum tangential velocity in the exit flow field 
is ݒ୲ ୣ୶୧୲ = 1.6 m/s. To put that into context, the circumferential 
velocity of the first-stage rotor at operating point 1 is ݒ୲ ଵ =26 m/s. Hence, ݒ୲ ୣ୶୧୲/ݒ୲ଵ  = 0.06. This represents a very 
favorable result compared to similar designs. Hence, the losses 
due to circulation in the exit flow field are negligible. 

Acoustic frequency spectrum.    To study the agreement 
between simulation and physical experiment we compare their 
resulting acoustic narrow-band spectra in Fig. 11. Clearly, both 
simulation and experiment show peaks at coinciding locations 
for the blade passing frequencies as well as their associated 
harmonics ݅ ⋅ BPFଵ and ݆ ⋅ BPFଵ with ݅, ݆߳ℕା. 

Furthermore, we observe additional peaks at the relative 
interaction frequencies ݂ ୰ୣ୪  = ݅ ⋅ BPFଵ + ݆ ⋅ BPFଶ with ݅ , ݆߳ℕା. 
These are attributed to pressure fluctuations caused by 
interactions between the first- and the second-stage rotor. The 
associated vortex (i.e. the first-stage tip vortex interacting with 
the second-stage rotor) is illustrated in Fig. 10, item 3.  

In general there is good agreement between simulation and 
physical experiment regarding the frequencies of ݅ ⋅ BPFଵ, ݆ ⋅BPFଶ and ୰݂ୣ୪ . However, there is a mismatch for the total noise 
of 4.9 dB(A) between simulation and experiment. The possible 
reasons for this are summarized below:  

First, the amplitudes of the peaks at the relative interaction 
frequencies ୰݂ୣ୪  do not match. However, we were able to show 
that this may be remedied by choosing an increased time 
resolution for the simulation. For the present optimization this is 
not necessary since we are not interested in the absolute values 
of the amplitudes of the peaks. Instead, it suffices to obtain 
information about the relative merits of various fan designs. By 
choosing a lower time resolution, therefore, the efficiency of the 

Fig. 8: Comparison of initial fan geometry for generation G5 (green) and the optimum candidate of generation G20 (red). The major differences 
between these geometries are: (1) the trailing edge of the first stage-rotor is moved further downstream, (2) winglets in the first-stage rotor are 
developed, (3) the leading edge of the second-stage rotor is changed, (4)  the diffuser geometry is changed from an elliptical to a straight cross section
and (5) the number of blades of the second-stage rotor is increased from 5 to 7. 
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simulation was improved without compromising the fidelity of 
optimization. 

 

 
 
Fig. 10: Vortex structure of the contra rotating fan during steady state 
operation at operating point 1. The vortices are visualized by an iso 
surface for ܳ = 20,000, which is colored according to local vorticity. 

 
Second, the peaks at rotational frequencies ୰݂୭୲ଵ = ݊ଵ/60 

and ୰݂୭୲ଶ = ݊ଶ/60 are prominently absent in the simulation 
results. In the experiment, these peaks are caused by imperfect 
balancing of the rotors and by mechanical imperfections in the 
bearing system. These mechanical aspects were not included in 
the simulation and their associated noise production mechanisms 
do not, therefore, exist in the simulation. Indeed, their inclusion 
in the simulation would be detrimental to the optimization, since 
this noise production mechanism is not associated with blade 

geometry. Consequently the omission of this mechanism actually 
helps avoid pollution of the evolutionary population. 

Third, most of the harmonics of the rotational frequencies 
are absent. This may be caused (a) by the exclusion of 
mechanical imbalancing in the simulation (as stated above) or 
(b) by the different inflow conditions between simulation and 
experiment (the simulation used a perfectly axisymmetric inlet 
nozzle while the experimental setup used an inlet nozzle which 
was framed by a 120 mm × 120 mm square package). 

Finally, there is a mismatch for the broadband noise between 
simulation and physical experiment. However, this is no 
disadvantage since we aim to minimize only tonal noise within 
this project (see Eq. 2). This deviation may be accounted for by 
the choice of the subgrid-scale model. Here we have utilized the 
Smagorinsky [13] model. In our previous publication [5] we 
have shown that the Wall-Adapting Local Eddy-Viscosity 
(WALE) [31] model is superior with regard to the prediction of 
aeroacoustic noise. However, this model had not yet been 
implemented in the code used for this project. 

 
CONCLUSION 

We have presented a multi-objective optimization strategy 
for a small contra-rotating fan of diameter 115 mm. The 
evolutionary optimization was performed using a meta model 
assisted version of the NSGA-II algorithm. The evaluation of the 
aeroacoustic noise was carried out using a newly developed 
LBM code which is tuned to take advantage of the high-
performance stream processors available on GPGPUs. 
Compared to implementations on standard CPUs this proved to 
increase numerical efficiency by an order of magnitude. The 
resulting contra-rotating fan achieves a total efficiency of 76% 
for operating point 1. The evolutionary optimized design 
represents an improvement of 6.1 dB(A) over the initially 
proposed solution. 
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NOMENCLATURE 
 ܽ = assumed bandwidth of tonal 

phenomena (Hz) BPF = blade passing frequency of rotor
stage ݅ (Hz) 

D = diameter of the fan (m) ݂ = frequency (Hz) ୰݂ୣ୪  = relative interaction frequency of 
orders ݅ and ݆ (Hz) 

Lp = sound pressure level (dB) 
M = Mach number ݊ = rotational speed of rotor ݅ (min-1)ୱ୲ୟ୲ = static pressure (Pa) ୲୭୲ = total pressure (Pa) ݍ = Metamodel ݍ = objective function (1, dB ⋅ Hz) Re୲  = tip-Reynolds number of rotor ݅ ܶ = torque of rotor ݅ (Nm) ݒ୲ ୣ୶୧୲ = tangential velocity in the exit flow

field (m/s) ݒ୲  = Tangential velocity of stage ݅
(m/s) ሶܸ = flow rate (m³/s) ߞ = ݊ଵ/݊ଶ = Ratio of rotational speeds 

η = aerodynamic efficiency ߩ = density of air (kg/m³) ߮ = 4 ሶܸ (ଷ݊ܦଶߨ)/ = dimensionless flow rate ߰ = 2Δ୲୭୲/(ߨଶܦߩଶ݊ଶ) = dimensionless pressure ߱ = angular velocity of rotor ݅ (s-1) 
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