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Abstract. In this paper we present a two-layer structural model suitable for predicting reli-
ably the passive (unstimulated) time-dependent three-dimensional stress and deformation states
of healthy young arterial walls under various loading conditions. It extends to the viscoelastic
regime a recently developed constitutive framework for the elastic strain response of arterial
walls (see HOLZAPFEL et al. [2001]). The structural model is formulated within the frame-
work of nonlinear continuum mechanics and is well-suited for a finite element implementation.
It has the special merit that it is based partly on histological information, thus allowing the
material parameters to be associated with the constituents of each mechanically-relevant arte-
rial layer. As one essential ingredient from the histological information the constitutive model
requires details of the directional organization of collagen fibers as commonly observed under a
microscope. We postulate a fully automatic technique for identifying the orientations of cellular
nuclei, these coinciding with the preferred orientations in the tissue. The biological material
is assumed to behave incompressibly so that the constitutive function is decomposed locally
into volumetric and isochoric parts. This separation turns out to be advantageous in avoiding
numerical complications within the finite element analysis of incompressible materials. For the
description of the viscoelastic behavior of arterial walls we employ the concept of internal vari-
ables. The proposed viscoelastic model admits hysteresis loops that are known to be relatively
insensitive to strain rate, an essential mechanical feature of arteries of the muscular type. To
enforce incompressibility without numerical difficulties, the finite element treatment adopted
is based on a three-field Hu-Washizu variational approach in conjunction with an augmented
Lagrangian optimization technique. Two numerical examples are used to demonstrate the relia-
bility and efficiency of the proposed structural model for arterial wall mechanics as a basis for
large scale numerical simulations.

�Corresponding author. E-mail address: gh@biomech.tu-graz.ac.at (G.A. Holzapfel)
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2 A structural model for the viscoelastic behavior of arterial walls

1 Introduction

A reliable constitutive model for arterial walls is an essential prerequisite for a number of differ-
ent objectives. For example, an efficient constitutive description of arterial walls is essential for:
(i) improved diagnostics and therapeutical procedures that are based on mechanical treatments,
such as percutaneous transluminal angioplasty (PTA) or bypass surgery; (ii) optimization of the
design of arterial prostheses; (iii) study of mechanical factors that may be important in trigger-
ing the onset of aneurysms or atherosclerosis, the major cause of human mortality in the western
world; (iv) the description of pulse wave dynamics and the interaction between the heart and the
circulatory system; and (v) investigation of changes in the arterial system due to age, disease,
hypertension and atherosclerosis, which is of fundamental clinical relevance.

We restrict our attention to preconditioned materials for which the typical stress softening ef-
fects, which occur during the first few load cycles, are no longer evident. In general, only the
mechanical response of preconditioned biological materials is published. Biological materials
exhibit a nearly repeatable cyclic behavior; the stress-strain relationship is predictable and the
associated hysteresis is relatively insensitive to strain rate over several decades (nearly constant
damping, independent of frequency). After preconditioning, vessel segments behave either elas-
tically or viscoelastically depending strongly on their physiological function and topographical
site. Typical viscoelastic behavior of arteries manifests itself in several ways, including stress re-
laxation, creep, time-dependent recovery of deformation following load removal and frequency-
dependence of strength. For the typical mechanical behavior of arterial walls, their mechanical
properties and constitutive equations, and for a list of references the reader is referred to the re-
views by, for example, HAYASHI [1993] and HUMPHREY [1995], and to the data book edited
by ABÈ et al. [1996].

In general, proximal arteries are of the ‘elastic type’ and behave elastically, while distal arteries
are of the ‘muscular type’ and do not meet the definition of an elastic continuum. They are
characterized on the basis of their pronounced viscoelastic behavior. Consequently, the stress at
a typical point of a muscular artery at a given time depends on the strain at that time and on the
strain history which affects the stress. The stress and strain responses to loading and unloading
are considerably different. However, the stress-strain relationship during loading and unloading
for each cyclic process is unique.

Another important feature of the passive (unstimulated) mechanical behavior of an artery is
that the stress-strain response during both loading and unloading is highly nonlinear. At higher
strains (pressures) the artery changes to a significantly stiffer tube. The typical (exponential)
stiffening effect originates from the ‘recruitment’ of the embedded wavy collagen fibrils, which
result in a markedly anisotropic mechanical behavior of arteries (see, for example, ROACH &
BURTON [1957] and NICHOLS & O’ROURKE [1998], Section 4). The fact that the stress
increases much faster than the strain seems common to almost all biological soft tissues and
was pointed out early on by WERTHEIM [1847] for human tissues. The early work by PATEL &
FRY [1969] considers the arterial wall to be cylindrically orthotropic, an assumption generally
accepted and used in the literature.

In addition, the deformation of arteries is volume-preserving within the physiological range of
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deformation (CAREW et al. [1968]), so that arteries, like all other biological soft tissues, may
be regarded as incompressible materials. For many years it has also been known that the load-
free state of arteries does not coincide with the stress-free state (VAISHNAV & VOSSOUGHI

[1983]). In general, a load-free arterial ring contains residual stresses (and significant strains),
which are essential to consider in order to predict reliably both the global mechanical response
and the stress distribution across arterial walls at the physiological state of deformation (see, for
example, CHUONG & FUNG [1986] and HOLZAPFEL et al. [2000]). More recent studies on
dog carotid arteries, performed by DOBRIN [1999], suggest that arterial media act mechanically
as homogeneous materials, although they are histologically heterogeneous.

Finally, to conclude the description of the general mechanical characteristics of arterial walls we
comment briefly on their typical thermoelastic behavior. Since the early work by ROY [1880-
82] it has been known that the thermoelastic properties of arteries differ significantly from
the vast majority of other materials. In particular, a piece of artery will contract its length
under tension when its temperature is raised, which is a similar thermomechanical behavior
to that observed for rubber-like materials; see, for example, HOLZAPFEL & SIMO [1996],
HOLZAPFEL [2000], Chapter 7, and the references therein.

The mathematical description of arterial walls often uses a linearized relationship between the
incremental stresses and strains (some examples are given in the data book edited by ABÈ

et al. [1996]). The associated incremental elastic moduli are applicable only to that specific
state of equilibrium from which the moduli were actually taken (by subjecting a material to a
small perturbation about a condition of equilibrium). The incremental approach, inappropriate
to describe finite deformations with which we are concerned, is still applied by some authors in
order to characterize the mechanical properties of arteries. The viscoelastic behavior of arteries
is often based on the concept of pseudo-elasticity in which the biological material is treated
as one elastic material during loading, and another elastic material during unloading (see, for
example, FUNG et al. [1979] and FUNG [1980]). The concept of pseudo-elasticity has the
advantage that mathematical descriptions of stress-strain-history laws for tissues during specific
cyclic loading histories are simple; however, the concept provides only a rough approximation
for the description a viscoelastic behavior.

The goal of this paper is to propose a three-dimensional structural model capable of simulating
the passive (unstimulated) mechanical behavior of healthy young arterial walls in the large vis-
coelastic strain regime. What is needed is a realistic, histologically-based model for establishing
the free energy and evolution equations in terms of physically meaningful material parameters.
The model needs to be simple enough in order to be able to determine the various material
parameters on the basis of suitable experimental tests. It turns out to be useful to consider the
network of elastin and collagen within the nonlinear continuum theory of the mechanics of
fiber-reinforced composites proposed by SPENCER [1984]. In addition, we aim to capture the
typical features of arterial response mentioned above with a special emphasis on viscoelasticity.
As a special case (at thermodynamic equilibrium) the structural model replicates (compress-
ible) finite hyperelasticity as recently proposed by HOLZAPFEL et al. [2000]. Thermodynamic
variables such as the entropy and the temperature are not considered here.

We begin, in Section 2, by giving a brief introduction to arterial histology, and continue by
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postulating an automatic technique for identifying the orientations of a large number of nu-
clei, which we assume to coincide with the preferred orientations in the tissue. This is es-
sential information for the structural model introduced in Section 3. The arterial wall, since
assumed healthy and young, is approximated as a two-layer thick-walled tube. The fully three-
dimensional anisotropic material description for each arterial layer is based on the multiplicative
split of the deformation gradient into volumetric and isochoric parts. The histological informa-
tion about the artery is incorporated in terms of structural tensors. Instead of modeling the load-
ing and unloading curves by two different laws of elasticity (pseudo-elasticity), so-called inter-
nal variables are introduced in order to replicate the dissipative mechanism, the non-recoverable
energy, of arteries. For these internal variables, appropriate evolution equations and closed form
solutions are provided in the form of convolution integrals. Section 4 deals with the finite ele-
ment formulation of the proposed arterial model suitable for obtaining ‘locking-free’ numerical
results. A three-field Hu-Washizu variational approach is presented together with an augmented
Lagrangian method. In Section 5, two representative numerical examples are used to demon-
strate the reliability and efficiency of the proposed structural model and to point out certain
characteristic features of arterial deformations. Based on a healthy and young arterial segment
some of the peculiar viscous effects are studied under various (static and dynamic) boundary
loadings.

2 Arterial histology

This section aims to review briefly the histology of arteries and to describe the mechanical
characteristics of the arterial components that provide the main elastic and viscoelastic contri-
butions to the arterial deformation process. In addition, we describe a fully automatic technique
for identifying the orientation of smooth muscle cells, these coinciding with the orientations of
collagen fibers. The distribution of preferred (fiber) orientations provide important histological
information for the structural model proposed in Section 3.

2.1 A brief review of arterial histology and the mechanical roles of arte-
rial components

Arteries are blood vessels with a wide variety of diameters. They are roughly subdivided into
two types: elastic and muscular. Elastic arteries such as the aorta and the carotid and iliac ar-
teries are located close to the heart (proximal arteries), have relatively large diameters and may
be regarded as elastic structures. Muscular arteries (distal arteries) such as femoral, celiac and
cerebral arteries are smaller, located at the periphery (more distal) and may be regarded as vis-
coelastic structures. Smaller arteries typically display more pronounced viscoelastic behavior
than arteries with large diameters; see, for example, TANAKA & FUNG [1974]. It is generally
assumed that the content of smooth muscle cells present in an artery is responsible for its vis-
cosity. For example, according to the study by LEAROYD & TAYLOR [1966], a high viscosity
is found in the human femoral artery, and this is attributed to its very large muscle content.
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Arterial walls are composed of three distinct concentric layers, the intima, the media and the
adventitia. The intima is the innermost layer of the artery and offers negligible mechanical
strength in healthy young individuals. However, the mechanical contribution of the intima
may become significant for aged arteries (arteriosclerosis) (the intima becomes thicker and
stiffer). In addition, it is important to note that pathological changes of the intimal components
(atherosclerosis) are associated with significant alterations in the mechanical properties of arte-
rial walls, differing significantly from those of healthy arteries (LEAROYD & TAYLOR [1966]
and LANGEWOUTERS et al. [1984]).

In the healthy young individuals on which we focus, only the media (the middle layer) and
the adventitia (the outermost layer) are responsible for the strength of the arterial wall and
play significant mechanical roles by carrying most of the stresses. At low strains (physiologi-
cal pressures), it is chiefly the media that determines the wall properties (XIE et al. [1995]).
The heterogeneous media is a highly organized three-dimensional network of elastin, vascular
smooth muscle cells and collagen with extracellular matrix proteoglycans (CLARK & GLAGOV

[1985]). However, it behaves mechanically as a homogeneous material (DOBRIN [1999]). Due
to the high content of smooth muscle cells, it is the media that is believed to be mainly re-
sponsible for the viscoelastic behavior of an arterial segment. The adventitia is composed of
elastin and collagen fibers that remain slack until higher levels of strain are reached (WOLIN-
SKY & GLAGOV [1964]). At very high strains the adventitia changes to a stiff ‘jacket-like’ tube
which prevents the artery from overstretching and rupturing (SCHULZE-BAUER et al. [2001]).
The adventitia is surrounded by loose connective tissue and its thickness depends on the type
(elastic or muscular), the physiological function of the blood vessel and its topographical site.

The concentration and arrangement of constituent elements and the associated mechanical prop-
erties of arterial walls may depend significantly on the species and the topographical site (see,
for example, the early work by ROY [1880-82]). The ratio of collagen to elastin in the aorta
increases away from the heart (WOLINSKY & GLAGOV [1967]) and the corresponding tensile
responses of circumferential and longitudinal specimens vary along the aortic tree (BERGEL

[1961b], BERGEL [1961a], LEAROYD & TAYLOR [1966] and TANAKA & FUNG [1974]
among many others). Elastin behaves like a rubber band and can sustain extremely large strains
without rupturing (it fractures at low stresses). The concentrically arranged collagen fibers,
which are very stiff proteins, contribute to the strength of arterial walls.

For a more detailed account of the different mechanical characteristics, the structure (distribu-
tion and orientation) of the interrelated arterial components, the morphological structure and the
overall functioning of the blood vessel the reader is referred to, for example, RHODIN [1980],
SILVER et al. [1989] and HOLZAPFEL et al. [2000], Section 2.

2.2 An automatic technique for identifying preferred orientations in ar-
terial layers

The quantitative knowledge of preferred orientations in arterial layers enhances the understand-
ing of the general mechanical characteristics of arterial walls significantly. It is important to
note that realistic structural models rely strongly on this knowledge. Collagen fibers are those
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components of arterial walls that render the material properties anisotropic. To describe the
anisotropic feature, appropriate geometrical data (fiber angles) are required. They serve as an
essential set of input data for numerical models.

2.2.1 Introduction and historical overview

High directional correlations between the long axes of cellular shapes and nuclei of, for exam-
ple, a stained patch of a media may be studied under a microscope. The very first contribution
concerning the directional analysis of smooth muscle cells seems to be attributed to RANVIER

[1880]. At a later date, STRONG [1938] used a combination of microdissection and etching
technique to show that dissected threads of muscle tissues are helically shaped with constant
radius. The author concluded that the helical patterns are also present in muscular arteries and
that the media is composed mainly of layered structures of helices.

Quantitative studies regarding (helical) pitch angles were carried out by RHODIN [1962],
RHODIN [1967], COPE & ROACH [1975] and CANHAM [1977] for several organisms at dif-
ferent locations. These studies do not support the conclusion of a unified orientation of smooth
muscle cells drawn by STRONG [1938]. The non-uniformity of fiber orientations in specimens
originating from different organisms and different locations was pointed out by WALMSLEY &
CANHAM [1979].

Smooth muscle cells provide active contractile elements of the arterial wall and have long and
thin centrally located nuclei (see RHODIN [1967] and SOMLYO & SOMLYO [1968]), which
can be stained with hematoxylin in order to reveal the cell (nuclei) orientations (WALMSLEY &
CANHAM [1979]).

A number of techniques have been proposed for analyzing the orientation of nuclei: WALMSLEY

& CANHAM [1979] used a digitizer to enter manually the coordinates of the nuclei of the human
intracranial media into a computer. Thereby, the orientation is described by two angles (in the
histological plane and in an orthogonal plane). In addition, PETERS et al. [1983] used a graphic
tablet to digitize the coordinates of nuclei within the human brain artery. As a reference frame of
coordinate axes they embedded a precisely trimmed block together with the vessel segment in
paraffin wax. The most thorough study was undertaken by TODD et al. [1983], in which shape,
position, linear dimensions, volumes and orientation of nuclei within several vessel types of
male Wistar rats are determined by means of computer-aided analyses. Sections with 0:5 (�m)

thickness are produced by an ultramicrotome and then stained and cut again to produce ultra-
thin sections with 60-80 (nm) thickness. Hence, the digitized contours of cells are assembled
into a three-dimensional model by appropriate software tools. Recent studies concentrate on
scattering light techniques (FERDMAN & YANNAS [1993] and BILLIAR & SACKS [1997]) and
polarized light microscopy using the birefringent optical property of collagen fibers (FINLAY et
al. [1998]) in order to obtain information about their architecture.

2.2.2 Automatic technique for identifying preferred orientations.

In this section we postulate an automatic technique for obtaining information about preferred
orientations in isolated arterial tissues, and, additionally, the concentration of nuclei. It is im-
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portant to note that a realistic structural model relies strongly on this type of histological infor-
mation.

Since a stained patch reveals the orientations of smooth muscle cells, in particular of the as-
sociated nuclei (see Figure 1), it is possible to identify the statistical distributions of nuclei in
the patch plane. In particular, we detect nuclei on an algorithmic basis by scanning each line of
the histological section (image) consecutively. All connected pixels that make up a nucleus are
copied to a stack. The stack is then transferred to a program, which determines the orientation
of the shape of the nucleus from its associated second-order moment. To continue, the nucleus
so detected is then deleted from the original image, and the procedure starts again at the location
where the first pixel of the preceding nucleus was detected.

The above mentioned program starts with the computation of the centroid xc of a nucleus ac-
cording to xc =

PN
i=1 xi=N , whereN refers to the total number of pixels making up the nucleus.

A representative shape of a nucleus is illustrated in Figure 1. The position vector of a typical
pixel i relative to a fixed origin is denoted by xi and the components of the vectors xc and xi are
xc; yc and xi; yi, respectively.

Knowing the centroid of the nucleus we may compute the second-order moment, D say, i.e.

D =

NX
i=1

[(ri � ri)I� ri 
 ri]; (1)

where we introduced the definition ri = xi � xc of the position vectors ri, and I denotes the
second-order unit tensor which, in index notation, has the form (I)ij = �ij with �ij being the
Kronecker delta. To write eq. (1) in a more convenient matrix representation, which is useful
for computational purposes, we have

[D] =

NX
i=1

�
(yi � yc)

2 �(xi � xc)(yi � yc)

�(xi � xc)(yi � yc) (xi � xc)
2

�
: (2)

If we imagine that every pixel, for example, possesses mass, then D may be seen as the inertia
tensor relative to a fixed origin. It is a symmetric second-order tensor with components forming
the entries of the inertia matrix, denoted by [D] and expressed through eq. (2). The diagonal
components (xi � xc)

2, (yi � yc)
2 and the off-diagonal components �(xi � xc)(yi � yc) of

[D] are associated with the moments of inertia and the product of inertia, respectively. Con-
sidering the eigenvalue problem for the matrix [D] we may finally find the eigenvalues (which
are the principal moments of inertia) and the associated eigenvectors which define the corre-
sponding principal axes. Hence, the orientation of the nucleus is clearly determined by its prin-
cipal axes, relative to which the product of inertia is zero. To this end it is immaterial whether
only perimeter-pixels or all the pixels making up the nucleus are considered. Subsequently, the
(mean) angle that occurs between the collagen fibers and the circumferential direction of the
respective arterial layer (media, adventitia) is denoted by '.

Finally, note that special attention is focused on the type of data stored in a stack. In order to
avoid artifacts such as scratches, which may occur in a histological section, or nuclei that are
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Human aortic media

Histological section

ri

xc

xi

Close up view
of a nucleus

Pixel i

Principal
axes

Origin
Nuclei

Figure 1: Histological section of a stained patch of a human aortic media. The circumferential
orientation of the patch was aligned with the horizontal axis. The algorithm detected
179 nuclei within the image representing a histological size of 0:5� 0:5mm2 (pmin =

15, rmin = 2).
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Figure 2: Histograms show statistical distributions of the orientation of nuclei in a human aortic
media (a), and of collagen fibers in a human aortic adventita (b). Statistical analyses
led to mean angles 'M = �8:4� in the media and 'A = �41:9� in the adventitia.
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represented by almost circular shapes, we require (i) a minimum number of pixels pmin that
make up a nucleus and (ii) a minimum ratio rmin of larger to smaller eigenvalues (principal
moments of inertia). If both criteria are satisfied the nucleus is accepted and its orientation is
considered as relevant data.

Example. A histological section of a stained patch of a human aortic media with size 0:5 �
0:5mm2 is considered. The image, as illustrated in Figure 1, was digitized and prepared for
scanning by the software tool developed. The horizontal direction of the patch was aligned with
the circumferential direction of the vessel. The criteria which ensure that the orientation of a
nucleus is considered as relevant data were set to the values pmin = 15 and rmin = 2.

The algorithm detected 179 nuclei within the image and determined the orientations of all nu-
clei. A typical statistical distribution of the orientation of nuclei is illustrated in Figure 2(a) in
the form of a histogram. The two (light grey) peaks in the figure fill the same area as the his-
togram. Statistical analyses led to mean angles 'M of the orientations of nuclei (collagen fibers)
in the media of �8:4�. The result that the collagen fibers in the media are almost circumferen-
tially oriented is in agreement with general histological data of a human aortic media (see, for
example, RHODIN [1980]).

Figure 2(b) shows the representative results of a statistical analysis performed for a human aortic
adventitia, which is characterized by predominant orientations of collagen fibers. The mean
angles between the collagen fibers and the circumferential direction in the adventitia are, for this
sample, determined as 'A = �41:9�. The automatic technique for identifying fiber directions
in the adventitia is very similar to that described above. Alternatively, for low numbers of nuclei
the intra-spatial voids between collagen fiber bundles may be used as indicators for preferred
orientations of the tissue.

3 Two-layer structural model for healthy young arterial
walls

Healthy young arteries are incompressible, highly deformable composite structures which show
nonlinear elastic and viscoelastic stress-strain responses with accompanying exponential stiff-
ening effects at higher strains (pressures). The goal of this section is to propose a structural
model for the mechanical behavior of arterial walls which considers these major mechanical
characteristics and which incorporates histological information. Based on the different mechan-
ical properties and physiological functions of the media and the adventitia we model the healthy
young arterial wall as a two-layer fiber-reinforced composite. In order to study stress distribu-
tions across the arterial wall the two layers are modeled as thick-walled tubes. Each layer is
modeled such that the material parameters involved may be associated with the histological
structure of the arterial layer, i.e. collagen and non-collagenous matrix material.

The constitutive model is based on nonlinear continuum mechanics and is formulated so that it
is well-suited for numerical realization using the finite element method. It embodies the sym-
metries of a cylindrically orthotropic material. Since the finite deformation behavior of arterial
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walls is regarded as isochoric in nature, and for purposes which become clear within the vari-
ational formulation, the constitutive formulation is presented exclusively within the framework
of decoupled (volumetric-isochoric) finite viscoelasticity. The subsequent study will be aimed
at developing a Lagrangian (material) description of the problem.

3.1 Constitutive framework

3.1.1 Basic kinematics and initial boundary-value problem

Let 
0 � R
3 be an open set defining a continuum body (a layer of the artery) with smooth

boundary surface @
0 positioned in the three-dimensional Euclidean space R 3. We refer to 
0

as the reference configuration of the body at (fixed) reference time t = 0. The body undergoes
a motion � during some closed time interval t 2 [0; T ] of interest. It is expressed via the map
� : ~
0 � [0; T ]! R

3, where ~
0 = 
0 [ @
0 denotes the closure of the open set 
0. Now the
motion transforms a reference point X 2 ~
0 into a spatial point x = �(X; t) for any subsequent
(given) time t. Consequently, the motion gives �(X; t) = X + u(X; t), with the displacement
field u(X; t), and V(X; t) = @�(X; t)=@t is defined to be the Lagrangian description of the
velocity field. Furthermore, F(X; t) = @�(X; t)=@X = I + @u=@X quantifies the deformation
gradient and J(X; t) = detF is the volume change.

Since we have in mind to express the constitutive model in the Lagrangian description we in-
troduce the right Cauchy-Green tensor C(X; t) = FTF as an appropriate deformation measure.
The material time derivative of C (subsequently denoted by a superimposed dot) is given by
_C = 2FTdF, where d is the symmetric part of the spatial velocity gradient _FF�1.

We apply now the concept of decoupled (volumetric-isochoric) finite (hyper)elasticity which
uses the multiplicative split of the deformation into volumetric (dilatational) and isochoric (dis-
tortional) parts (FLORY [1961], OGDEN [1978]). We write,

F = (J1=3I)F; detF � 1 : (3)

With eq. (3)1 and the use of the modified deformation measure C = FTF the right Cauchy-
Green tensor is then given in the form C = (J 2=3I)C. The structure of the material at any point
X is characterized by two (second-order) tensors, which we denote by A and B. The structural
tensors provide a measure of the preferred orientations in the different arterial layers.

To describe the history of the deformation, we introduce a set of internal (strain-like) variables,
denoted by the second-order tensors ��, � = 1; : : : ; m. For the basic idea that we use for
the description of inelastic processes, see, for example, VALANIS [1972], LUBLINER [1990],
SIMO & HUGHES [1998] or HOLZAPFEL [2000], Section 6.9.

All viscoelasticity is assumed to occur purely by isochoric deformations and all volume chang-
ing deformations are forced to be reversible. Hence, the tensorial (history) variables �� are akin
to C. They are not accessible to direct observation, characterize the current departure from
equilibrium and contribute to the total strain (stress). The viscoelastic behavior is modeled
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by � = 1; : : : ; m viscoelastic processes with corresponding relaxation (or retardation) times
�� 2 (0;1).

The Lagrangian form of Cauchy’s first equation of motion has the representation

_� = V ,

Div(FS) + b0 = �0
_V ,

)
(4)

valid for the domain 
0 � [0; T ]. In these equations S = S(X; t) is the second Piola-Kirchhoff
stress tensor, b0 = b0(X; t) is a prescribed (given) reference body force (defined per unit refer-
ence volume in 
0) that is referred to the reference position X, and �0(X) > 0 is the reference
mass density. The term �0

_V characterizes the inertia force per unit reference volume. The oper-
ator Div(�) denotes the divergence of a quantity (�) with respect to the reference configuration.

In addition to the differential equations (4) the problem is subject to certain boundary and initial
conditions as well. We assume subsequently that the boundary surface @
0 is subdivided into
a region @
0 � � @
0 and into a remainder @
0 u, so that these regions, assumed to be time
invariant, obey @
 = @
0 u [ @
0 � and @
0 u \ @
0 � = ;. The required boundary and initial
conditions are summarized as

u(X; t) = u on @
0 u, for all t 2 [0; T ],

[F(X; t)S(X; t)]N = T on @
0 �, for all t 2 [0; T ],

u(X; t)jt=0 = u0 on ~
0,

V(X; t)jt=0 = V0 on ~
0,

9>>>>>=
>>>>>;

(5)

where the overbars (�) denote prescribed (given) functions on the boundaries @
0(�) � @
0

of the body occupying 
0 (u : @
0 u � [0; T ] ! R
3 for a displacement field and T :

@
0 � � [0; T ] ! R
3 for a first Piola-Kirchhoff traction vector, i.e. force measured per unit

reference surface area), and (�)0 denote prescribed functions on ~
0 (u0 : ~
0 ! R
3 for an ini-

tial displacement field and V0 : ~
0 ! R
3 for an initial velocity field). The prescribed traction

vector T in (5)2 corresponds to ‘dead’ loading (the load does not depend on the motion of the
body). The unit exterior vector normal to @
0 � is denoted by N.

The set (4), (5) of equations defines the strong form of the initial boundary-value problem. In the
following we consider only the quasi-static case for which �0 _V = o. Additionally we neglect
body forces (b0 = o). All that remains is to specify a constitutive equation for the stress. This
is done in the next section.

3.1.2 Constitutive equations and internal dissipation

In order to derive constitutive equations for isothermal processes (i.e. at constant temperature),
we define a Helmholtz free-energy function 	 (defined per unit reference volume), which de-
scribes the viscoelastic deformation of a material point from the reference configuration 
0 to
some current configuration 
. For numerical purposes we consider the material as (slightly)
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compressible. Hence, the free energy, at any point X, is based on kinematic decomposition (3)
and expressed by the unique decoupled representation

	 = U(X; J) + 	(X;C;A;B) +
mX
�=1

��(X;C;A;B;��) ; (6)

valid over some closed time interval t 2 [0; T ]. The first two terms on the right hand side
of eq. (6) characterize the equilibrium state of the viscoelastic solid at fixed F as t ! 1,
which is a state of balance, while the third term, the free energy

Pm

�=1��, characterizes the
non-equilibrium state, i.e. the relaxation and creep behavior. The given strictly convex function
U is responsible for the volumetric elastic response of the material, which only depends on
the position X and on J . The given convex function 	 is responsible for the isochoric elastic
response. The representation (6) is well-suited for numerical implementation (see, for example,
SIMO et al. [1985], SIMO & TAYLOR [1991] and HOLZAPFEL & GASSER [2001] amongst
others).

Now we particularize the second law of thermodynamics through the Clausius-Planck inequal-
ity, i.e.Dint = S : _C=2� _	 � 0, whereDint is the internal dissipation (local entropy production).
By computing the rate of change of 	 and using the chain rule, we find that 

S� J

dU

dJ
C�1 � 2

@	

@C
�

mX
�=1

2
@��

@C

!
:
1

2
_C�

mX
�=1

@�

@��

: _�� � 0 : (7)

In deriving (7) we used the properties _
J = @J=@C : _C = JC�1 : _C=2 and _C = 2(@C=@C) :

_C=2.

In order to satisfy Dint � 0 for all admissible processes we apply the standard Coleman-Noll
procedure (see COLEMAN & NOLL [1963] and COLEMAN & GURTIN [1967]). For arbitrary
choices of _C, we deduce the constitutive equations for compressible hyperelasticity and a re-
mainder inequality governing the non-negativeness of the internal dissipation. In particular,
the stress response constitutes an additive split of the second Piola-Kirchhoff stress tensor into
purely volumetric and isochoric contributions, i.e. Svol and Siso, Q�, � = 1; : : : ; m, respectively.
We write

S = 2
@	

@C
= Svol + Siso +

mX
�=1

Q� : (8)

This split is based on the definitions

Svol = J

dU(X; J)

dJ
C�1

; Siso = 2
@	(X;C;A;B)

@C
; Q� = 2

@��(X;C;A;B;��)

@C
(9)

of the volumetric elastic stress contribution Svol, the isochoric elastic stress contribution Siso

and the isochoric viscoelastic stress contributions Q�, � = 1; : : : ; m. The stresses Q� may be
interpreted as non-equilibrium stresses in the sense of non-equilibrium thermodynamics, so that
the free energy �� takes on the form

�� =

Z
C

Q�(X;C
�

;A;B;��) :
1

2
dC�

; � = 1; : : : ; m ; (10)
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(for a detailed exposition of the thermodynamic background see the text by HOLZAPFEL

[2000], which contains further references). Since we agreed that the time-dependent response
of the volumetric contribution is neglected, the tensor quantities Q� describe purely isochoric
stresses, so that Q� : C = 0, � = 1; : : : ; m. The internal dissipation is given by

Dint =

mX
�=1

Q� :
_
�� � 0 ; (11)

with the internal constitutive equations Q� = �@��=@��. Through analogy with the equilib-
rium equations for the linear viscoelastic solid Q� is interpreted as the non-equilibrium stress
in the system as introduced above. The internal constitutive equations restrict the free energyPm

�=1�� in view of (9)3. Note that for arbitrary elastic processes _
�� = O, and hence the

internal dissipationDint is zero (the material is considered to be elastic).

This constitutive framework is now used for the development of the internal variable model to
describe the material behavior of arterial layers.

3.2 Energy function for the elastic response of arterial layers

To study the elastic response of healthy young arterial segments we model the arterial wall
as a two-layer tube (media and adventitia). Each layer of the arterial wall is considered as a
thick-walled composite structure reinforced by two families of collagen fibers which are con-
tinuously embedded in a non-collageneous matrix material. The fibers are helically wound
along the arterial axis and symmetrically disposed with respect to the axis. Note, however, that
the orientations of the fibers in the two layers are different. We postulate the change of the free
energy within an elastic process at any point X 2 (
0 [ @
0)M in the media M and at any point
X 2 (
0 [ @
0)A in the adventitia A according to the decoupled form

	M = UM(X; J) + 	M(X;C;AM;BM);

	A = UA(X; J) + 	A(X;C;AA;BA);

)
(12)

valid in time interval t 2 [0; T ].

The terms UM and UA, associated with the respective media M and adventitia A, denote
Lagrange-multiplier terms which vanish for the incompressible limit. The functions 	M and
	A are associated with the isochoric elastic responses of the media and adventitia, respectively.
They depend on the respective points, the modified strain C and on the (second-order) tensors
Aj and Bj, j = M;A, which characterize the structure of the media and adventitia, i.e. the
orientation of the collagen fibers. The structural tensors are defined by the tensor products

Aj = a0 j 
 a0 j; Bj = b0 j 
 b0 j; j = M;A; (13)

with the two unit vector fields a0 : 
0 ! R
3 and b0 : 
0 ! R

3, describing the basic geometry
of the two families of fibers in the reference configuration. They characterize the two preferred
fiber directions in each point X 2 
0 which are determined from the automatic technique
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discussed in Section 2.2. In a cylindrical polar coordinate system, the components of a0 j and
b0 j have the forms

[a0 j] =

2
4 0

cos'j

sin'j

3
5
; [b0 j] =

2
4 0

cos'j

� sin'j

3
5
; j = M;A; (14)

where 'M and 'A are the (mean) angles between the collagen fibers (arranged in symmetrical
spirals) and the circumferential direction in the media and adventitia.

The next goal is to particularize the isochoric contributions 	j , j = M;A. According to
SPENCER [1984], the integrity basis for the three symmetric second-order tensors C, A, B con-
sists of nine invariants and we may alternatively express the functions 	j in terms of these nine
invariants. However, in order to minimize the number of material parameters (which are associ-
ated with the collagen and the non-collagenous matrix material varying along the arterial tree,
with aging, hypertension etc.) we consider expressions in terms of three invariants only. Clearly,
here we are dealing with two different materials, however, the mechanical characteristics of the
media and adventitia are similar, so that we use the same form of free-energy function (but a
different set of material parameters) for each layer. Thus, we propose the particularizations of
	j as

	M =
cM

2
(�I1 � 3) +

k1M

2k2M

X
i=4;6

�
exp[k2M(�IiM � 1)2]� 1

	
;

	A =
cA

2
(�I1 � 3) +

k1A

2k2A

X
i=4;6

�
exp[k2A(�IiA � 1)2]� 1

	
;

9>>>=
>>>;

(15)

with the (positive) material parameters cM, k1M, k2M and cA, k1A, k2A associated with the media
M and adventitia A, respectively. The parameters c and k1 are stress-like material parameters,
while k2 is a dimensionless parameter. The first modified invariant is characterized by

�
I1(C) = I : C; (16)

and

�
I4 j =

(
Aj : C; for Aj : C � 1,

1; for Aj : C < 1;
�
I6 j =

(
Bj : C; for Bj : C � 1,

1; for Bj : C < 1;
(17)

are two additional invariants associated with each layer j = M;A (the restrictions imposed on
these invariants ensure that the collagen fibers cannot be subject to compressive strains). The
invariants �

I4 and �
I6 have a clear physical interpretation. They are the squares of the stretches in

the two families of (collagen) fibers and represent stretch measures.

ROACH & BURTON [1957] identified the mechanical contributions of elastin and collagen in
the human iliac artery. They concluded that elastin, as a main contributor to the normal pulsatile
behavior of arteries, bears loads primarily at low stresses and strains, while at high strains the
collagen fibers dominate the mechanical behavior of the artery. The mechanical response of
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the non-collagenous matrix material, composed mainly of elastin fibers, is similar to that of a
rubber-like material, and is hence assumed to be isotropic and modeled as a (classical) neo-
Hookean material, which is expressed in terms of the first modified invariant �

I1 (the first parts
of the isochoric strain-energy functions 	 in eqs. (15)). The wavy collagen fibers are relaxed
at low strains (pressures), but are progressively ‘recruited’ at increasing strains and dominate
the mechanical behavior of the artery at high strains. The ‘recruitment’ of the collagen fibers
leads to the stiffening effect and the characteristic strongly anisotropic mechanical behavior of
arteries. This is modeled by an exponential function and expressed in terms of the invariants �

I4

and �
I6 (the second parts of the functions 	 in eqs. (15)).

In contrast to many other (classical) models based on phenomenological approaches the pro-
posed three-dimensional structural model has the main advantage that the material parameters
have immediate physical meaning. The model is consistent with both mechanical and mathe-
matical requirements and is able to capture the main characteristics of the arterial response in an
accurate manner, as pointed out by HOLZAPFEL et al. [2000], in which a detailed comparison
with other prominent (elastic) material models is also given. In addition, note that all mathe-
matical expressions of the constitutive model problem presented above are limited to stresses
and strains in the physiological range. They do not apply when the artery is stressed far beyond
the physiological range where permanent deformations occur and plastic constitutive models of
arterial walls are required. For an extension of the presented model to the elastoplastic domain
the reader is referred to the more general framework of GASSER & HOLZAPFEL [2001], which
also focus on the implementation in a finite element program.

3.3 Decoupled volumetric-isochoric stress response

For each arterial layer the stress response is derived from the associated Helmholtz free-energy
function. According to the constitutive framework discussed in Section 3.1.2 we arrive at the
(second Piola-Kirchhoff) stress response

SM = (JpC�1)M +
X

a=1;4;6

(Siso a +

mX
�=1

Q�a)M;

SA = (JpC�1)A +
X

a=1;4;6

(Siso a +

mX
�=1

Q�a)A

9>>>>>=
>>>>>;

(18)

for the media and adventitia, respectively (compare with the mathematical structure (8)2). How-
ever, Siso, Q� are replaced by Sisoa, Q�a signifying the a-th constituent of the arterial layer
(a = 1 is associated with the non-collagenous matrix material and a = 4; 6 with the two
families of collagen fibers). We recall that the index � stands for the number of viscoelastic
processes. Note that for the case a = 1 isotropy is recovered as a special case.

Considering the particularization (15) of the free energy and the decoupled representation of the
kinematics according to Section 3.1.1, we may express the isochoric elastic stress contributions
(eq. (9)2) in the alternative form

Siso a = J
�2=3

P : (2 aDa); (a = 1; 4; 6; no summation) ; (19)
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which is used in relations (18). We introduced the useful definitions

p =
dU(J)

dJ
;  a =

@	(�I1; �I4; �I6)

@
�
Ia

; a = 1; 4; 6 (20)

of the stress functions (suppressing the dependency on the reference point X in the arguments
of the energies U and 	), i.e. the hydrostatic pressure p and  a, a = 1; 4; 6, which are affected
by the special choice of U and 	 (the material). In addition, in eq. (19) we have introduced the
definitions

P = I�
1

3
C�1 
 C ; Da =

@
�
Ia

@C
; a = 1; 4; 6 (21)

of kinematic quantities, i.e. the (fourth-order) projection tensor P and the second-order tensors
Da, a = 1; 4; 6. Note that P furnishes the physically correct deviator in the material description
(see HOLZAPFEL [2000]). From eq. (21)2 we may conclude, using definitions (16), (17), that
D1 = I, D4 = A and D6 = B. With the given functions (15), it is also straightforward to
particularize eq. (20)2 in order to obtain

 1 = c=2 ; (22)

 4 = k1(�I4 � 1)exp
�
k2(�I4 � 1)2

�
; (23)

 6 = k1(�I6 � 1)exp
�
k2(�I6 � 1)2

�
: (24)

As seen from definition (19) (with eqs. (22)–(24)) the stress response consists of purely isotropic
contributions Siso 1 due to the matrix material, and anisotropic contributions S iso 4, Siso 6 due
to the two families of fibers, which characterize decoupled stresses (associated only with the
fibers).

The non-equilibrium states of the arterial layers are associated with the additional tensor vari-
ables Q�a for � = 1; : : : ; m and a = 1; 4; 6. They are zero at a state of thermodynamic equi-
librium, which implies that the anisotropic material responds perfectly elastically. The non-
equilibrium stresses are governed by complementary equations of evolution, as discussed in the
following section.

3.3.1 Evolution equations for the non-equilibrium stresses

In order to determine how a viscoelastic process in an artery evolves, we have to postulate
additional equations governing the non-equilibrium stresses.

Hysteresis loops of arterial tissues are known to be not very sensitive to strain rates over sev-
eral decades (see, for example, the study by TANAKA & FUNG [1974] performed for various
arteries of dogs). This is also true for other types of biological soft tissues such as articular
cartilage (WOO et al. [1979]) or the mesentery (CHEN & FUNG [1973]). Hence, we have
to select a rheological model which considers this characteristic feature. Classical mechanical
devices such as the Maxwell model (spring in series with a dashpot), the Kelvin-Voigt model
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(spring in parallel with a dashpot) or a device of the ‘standard solid’ type, which is a free spring
on one end and one Maxwell element arranged in parallel, are not able to represent the typi-
cal viscoelastic behavior of soft tissues. The damping mechanisms of these devices are strongly
frequency dependent and are not suitable candidates for formulating meaningful evolution equa-
tions. However, a mechanical device which is composed of a number of springs and dashpots
gives the required viscoelastic behavior (see, for example, FUNG [1993], Section 7.6, for more
details and references).

For this reason we extend the attractive one-dimensional generalized Maxwell model to the
three-dimensional region. The generalized Maxwell model may be seen as a mechanical device
with a free spring on one end and an arbitrary number m of Maxwell elements arranged in
parallel (see, for example, HOLZAPFEL [2000], Section 6.10). The more Maxwell elements
and associated (different) relaxation times used the nearer is the response to constant damping
over a wide frequency spectrum.

Hence, for each of the (isochoric) non-equilibrium stresses, separately for each � and con-
stituent a of the arterial layer, we formulate an evolution equation. We assume the set of linear
differential equations

_Q�a +
Q�a

�� a

= �
1

�a
_Siso a ; Q� ajt=0 = O ; (a = 1; 4; 6; no summation);

and � = 1; : : : ; m) (25)

valid for some semi-open time interval t 2 (0; T ] and for small perturbations away from the
equilibrium state. The initial conditions (25)2 ensure that the reference configuration has no
viscoelastic stress contribution. The constants �1�a 2 [0;1) introduced are given so-called
free-energy factors, which are non-dimensional and associated with the relaxation times ��a 2
(0;1), which describe the rate of decay of the stress and strain in a viscoelastic process.

Closed-form solutions of the linear equations (25)1 may be represented by the simple convolu-
tion integrals

Q�a =

t=TZ
t=0+

exp[�(T � t)=��a]�
1

�a
_Siso a(t)dt ; (26)

for a = 1; 4; 6 and � = 1; : : : ; m. The typical features of anisotropic arterial response in the
large strain domain is now described completely by the constitutive equations (18), with expres-
sions (19)–(24) and (26).

4 Finite element formulation

In order to capture the complex deformation behavior of arteries, which are considered here
as incompressible materials, we employ the well established finite element methodology. In
particular, we are interested in a suitable variational approach capable of representing the purely
isochoric response in an efficient way.
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4.1 Three-field variational principle

The equivalent counterpart of the strong form of the initial boundary-value problem, as ex-
pressed by the set (4), (5), is its weak form (see HOLZAPFEL [2000], Section 8.2). The weak
form leads to the fundamental principle of virtual work to be solved for the single unknown
displacement field u. However, it is known that such a single-field variational principle is not
appropriate for solving problems involving constrained materials, which we want to study here.
The analysis of, for example, nearly incompressible or incompressible constitutive responses
is associated with numerical difficulties (‘locking’ and ‘checkerboard’ phenomena) and they
perform rather poorly within the context of a (standard) Galerkin method. These difficulties,
inherent in the conventional single-field variational approach, arise from the overstiffening of
the system.

Here we outline briefly the mixed Jacobian-pressure formulation emanating from a three-field
Hu-Washizu variational approach proposed by SIMO et al. [1985] (for applications in hyper-
elasticity see, for example, SIMO [1987], SIMO & TAYLOR [1991], WEISS et al. [1996],
HOLZAPFEL & GASSER [2001]; for applications in large-strain plasticity the reader is referred
to the works by SIMO et al. [1985], SIMO & MIEHE [1992], MIEHE [1996] among oth-
ers). This type of mixed formulation may be regarded as the nonlinear extension of the B-bar
method, as proposed by HUGHES [2000], and overcomes these numerical difficulties. Thereby,
the displacement field and two additional field variables are treated independently within finite
element discretizations.

The functional, L say, is decomposed into three parts and takes advantage of the decoupled
representation of the free energy according to (6). It is defined as

L(u; p; ~J ;�) = �(u; p; ~J) + �ext(u) + �aug( ~J ;�) ; (27)

�(u; p; ~J) =
Z

0

[U( ~J) + p(J(u)� ~
J) + 	(C(u);A;B) (28)

+

mX
�=1

��(C(u);A;B;��(u; t))]dV ; (29)

�ext(u) = �
Z

0

B � udV �
Z

@
0 �

T � udS ; (30)

�aug( ~J ;�) =

Z

0

�h( ~J)dV (31)

(suppressing the dependency on X in the arguments of the functions), where �ext denotes the
external potential energy. Here, u is the common displacement field, while p 2 L2(
0) and ~

J 2
L
2
+(
0) are additional independent field variables which may be identified as the hydrostatic

pressure and the volumetric ratio (kinematic variable), respectively. The constraint condition
J = ~

J is enforced by p.

Note, that the variational principle (27) is augmented by a continuously differentiable function
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h( ~J) : R+ ! R that satisfies h(1) = 0 for ~
J = 1, which is multiplied by a Lagrange multiplier

� 2 L2(
0). For example,

h( ~J) = ~
J � 1 ; U( ~J) =

�

2
( ~J � 1)2 (32)

are suitable candidates for the functions h and U , with h(1) = 0, U(1) = 0. Note that for the
incompressible case the (positive) parameter � > 0 serves as a user–specified penalty parameter
which has no physical relevance.

Since the penalty parameter � > 0 is assumed to be positive, dU 2( ~J)=d2 ~J > 0 in R+, the
function U , which may be viewed as a penalty function for ~

J = 1, is convex. It is worthwhile
mentioning that the augmented term prevents the (global) stiffness matrix from becoming in-
creasingly ill-conditioned for increasing �, a problem known from the penalty method. With the
augmented term the incompressibility constraint, formulated in terms of the additional variable
~
J , can be enforced up to an arbitrary precision.

We require that the solutions of the boundary-value problem, i.e. the three field variables u,
p and ~

J , are stationary points of the functional L. This leads to the set of Euler-Langrange
equations in the weak forms

D�uL(u; p; ~J ;�) =

Z

0

�
J(u)pC�1(u) + 2

@	(C(u);A;B)
@C

+

mX
�=1

2
@��(C(u);A;B;��(u; t))

@C

!
:
1

2
�C(u)dV +D�u�ext(u) = 0 ,

D�pL(u; p; ~J ;�) =

Z

0

(J(u)� ~
J)�pdV = 0 ,

D� ~JL(u; p; ~J ;�) =

Z

0

 
dU( ~J)

d ~J
� p+ �

dh( ~J)

d ~J

!
�
~
JdV = 0 ,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(33)

where �(�) denotes the first variation of the field variable (�). For the variational equation (33)1,
we require �u to be kinematically admissible, i.e. f�u : 
0 ! R

3j�uj@
0 u
= 0g, and eqs. (33)2

and (33)3 hold for all �p and � ~J , respectively. The termD�(�)L denotes the directional derivative
(Gâteaux derivative) of L at x in the direction of the field variable (�), and is defined through
the expression

D�(�)L =
d

d"

����
"=0

L((�) + "�(�)) (34)

(see, for example, MARSDEN & HUGHES [1994]), where D(�) is the Gâteaux operator and "
is a scalar parameter.

If the local forms of eqs. (33)2 and (33)3 are satisfied, then p is identified as the hydrostatic
pressure. Hence, according to definitions (9) and (20)1 the first three terms on the right-hand
side of the variational equation (33)1 give precisely the second Piola-Kirchhoff stress tensor
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S with the specification (18). Consequently, the integral in (33)1 is the internal (mechanical)
virtual work �Wint, while the last term D�u�ext(u) in (33)1, i.e. the directional derivative of
�ext with respect to u in the arbitrary direction �u, denotes the negative external (mechanical)
virtual work��Wext, and hence the variational equation (33)1 characterizes precisely the virtual
work equation in the material description and expresses equilibrium in the form �W int = �Wext.

4.2 Mixed finite element formulation and Uzawa update

In this section we outline briefly a finite element formulation that avoids numerical difficulties
in the incompressible limit. The formulation is used for the solution of the momentum balance
equation together with the augmented Lagrangian optimization technique and an Uzawa update
algorithm (ARROW et al. [1958]), thereby avoiding ill-conditioning of the stiffness matrix as-
sociated with the penalty approach. The reason for the ill-conditioned stiffness matrix may be
found in the significantly different magnitudes of the volumetric and isochoric components.

To construct efficient finite element approximations we use mixed interpolations for the Jaco-
bian and the pressure. For the fields X, u and �u we use isoparametric interpolations and obtain

Xh =

nnodeX
k=1

Nk(�)Xk ; uh =

nnodeX
k=1

Nk(�)uk ; �uh =

nnodeX
k=1

Nk(�)�uk ; (35)

where the subscript (�)h indicates the discrete (finite-dimensional) counterpart to quantity (�).
The reference position, and the real and virtual displacements of the element node k are denoted
by Xk, and uk and �uk, respectively. The subscript (�)k is an index running between 1 and the
total number of element nodes, denoted by nnode. In eqs. (35), � = f�1; �2; �3g 2 
2 are the
local element coordinates (the natural coordinates), where 
2 = f� 2 R

3j(�1; 1)� (�1; 1)�
(�1; 1)g characterize the domain of the parent element, i.e. a biunit cube. The isoparametric
interpolation function associated with node k, is denoted by Nk(�) and defined in 
2 (for
a more detailed explanation of these standard concepts, see, for example, HUGHES [2000]).
Now we shall assume that the interpolation functions are tri-linear and expressed in the form
Nk(�) =

1
8
(1 + �1k�1)(1 + �2k�2)(1 + �3k�3), k = 1; : : : ; nnode = 8.

With eqs. (35) it is straightforward to compute the discrete current position xh = Xh + uh and
the discrete deformation gradient Fh =

Pnnode
k=1 xk 
rXNk(�), where the standard expressions

rXNk(�) =
@Nk(�)

@Xh

= J�Th
@Nk

@�
; Jh =

@Xh

@�
=

nnodeX
k=1

Xk 
r�Nk (36)

are to be used. Therein, r(�)Nk denotes the gradient of the scalar function Nk with respect to
the coordinates (�) and Jh is the Jacobian operator, which transforms the gradient r�Nk to
the gradient rXNk. With the fundamental kinematic expression Fh we are able to compute any
strain and associated stress quantity.

In addition, for the independent (dilatation and pressure) variables ~
J and p, we introduce the

same constant (discontinuous) interpolation functions over a given element domain without
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having to satisfy continuity across the element boundaries (SIMO et al. [1985]). Thus, we write
~
Jh =

�~
J and ph = �p, where the symbol (��) denotes the constant interpolation function. Since

the additional (independent) variables �~
J and �p can be eliminated at the element level (static

condensation) we get

�~
J =

ve

Ve

; �p = (�h
dh(

�~
J )

d
�~
J

+
dU(

�~
J )

d
�~
J

)

�����
�~J =ve=Ve

; (37)

where ve and Ve are element volumes in the current and reference configurations, respectively.
Recalling eqs. (32), the mean pressure (37)2 yields �p = �h + �(ve � Ve)=Ve, and for �~

J ! 1

we obtain the limit �p ! �h. Hence, the expression (37)2 for the constant pressure �p (with �~
J

determined in (37)1) is therefore used in the discrete form of the internal virtual work. This
type of formulation is known as the mean dilatation technique, leading to the Q1=P0-element,
a procedure which goes back to NAGTEGAAL et al. [1974]. This approach may be regarded as
the nonlinear extension of the B-bar method, as proposed by HUGHES [2000].

The nonlinear (initial boundary-value) problem is solved by means of an incremental/iterative
solution technique of Newton’s type until convergence is achieved. Consequently, a sequence
of linearized problems leads to solution increments at fixed �. To enforce the incompressibility
constraint a nested iteration of Uzawa’s type is performed on the finite element level at fixed u,
p, ~
J until the magnitude of h = ( ~J � 1) is less than a given tolerance of accuracy. According to

SIMO & TAYLOR [1991], the Lagrange multiplier � may then be determined by the standard
update procedure �( �+ �h of a typical Q1=P0 mixed finite element.

5 Representative numerical examples

Two numerical examples are now chosen to investigate the characteristic viscoelastic (relaxation
and creep) behavior of a healthy and young arterial segment under various (static and dynamic)
boundary loadings. They are supposed to show the physical mechanisms of the model outlined
in Section 3, and to document finite element results which are in good qualitative agreement
with experimental data.

Since we consider an arterial segment with no pathological changes of the innermost layer,
the intimal components have negligible (solid) mechanical contributions, we approximate the
arterial segment by two separate thick-walled fiber-reinforced circular layers, i.e. the media and
the adventitia, which behave incompressibly.

In order to consider residual stresses (and strains) associated with the unloaded configuration,
we introduce opened-up (reference) configurations for the media and adventitia. Each arterial
layer in the reference configuration is assumed to be unstressed (the residual stresses are entirely
removed by leaving all other properties of the material unchanged) and taken to correspond to
an open sector of a circular cylindrical tube with opening angle �, wall thicknessH , inner radius
Ri and length L, as indicated in Figure 3. We assume that the media occupies 2=3 of the arterial
wall thickness. The collagen fibers are symmetrically disposed with respect to the axis and the
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Figure 3: Opened-up (stress-free) configuration of an arterial layer and associated geometrical data for
the media and adventitia.

orientations of the fibers, characterized by the angle ' at a reference point X, are different in
the two layers. Specific geometrical data for each layer are summarized in Figure 3.

The unloaded but stressed circular cylindrical shape of the arterial segment, for which � = 0:0�,
is generated by application of an initial (pure) bending deformation (for more details see
HOLZAPFEL et al. [2000]). By assuming no changes in thickness during this deformation,
the dimensions of the arterial cross-section coincide then with those of a human left anterior de-
scending coronary artery (LAD), as documented in CARMINES et al. [1991]. However, therein
no geometrical information about separated opened-up configurations of arterial layers is re-
ported. Note that, in general, there may also be residual stresses in the axial direction of the
arterial segment (VOSSOUGHI [1992]), but we neglect this in the present study.

The proposed energy function has been implemented in Version 7.3 of the multi-purpose finite
element analysis program FEAP, originally developed by R.L. Taylor and documented in TAY-
LOR [2000]. The three-dimensional finite element analysis is based on 8-node brick elements.
During the computation the top and bottom faces of the tube are assumed to remain planar.
Since the expected stress and strain states are homogeneous in the circumferential direction,
only a sector of the structure (a wedge of any angle) is discretized by eight finite elements (five
for the media and three for the adventitia) and analyzed. Each node at the media/adventitia in-
terface is linked together and common symmetrical boundary conditions for the structure are
applied.

5.1 Identification of the material parameters

In order to obtain meaningful results we need a complete set of elastic and viscoelastic ma-
terial parameters based on experimental data. Since these parameters are not known a priori,
we propose an identification process for quantifying the required material parameters involved
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in the constitutive model outlined in Section 3. The decomposition of the model into elastic
and viscoelastic responses allows separate determination of the material parameters associated
with the elastic and viscoelastic parts. In this section the identification process for the material
parameters is described in detail.

5.1.1 Elastic material parameters

The (elastic) material parameters ci, k1 i, k2 i, i = M;A, which are involved in the strain-energy
functions (15), were fitted to the experimental data of a human left anterior descending coro-
nary artery (LAD), as given in CARMINES et al. [1991]. For purposes which were made clear
by HOLZAPFEL et al. [2000] we set cM = 10cA. The penalty parameters �i, i = M;A, see
eq. (32)2, were chosen to be 104 (kPa). The resulting values are summarized in Table 1.

Media Adventitia

cM = 27:0 (kPa)

k1M = 0:64 (kPa)

k2M = 3:54 (�)

�M = 104 (kPa)

cA = 2:7 (kPa)

k1A = 5:1 (kPa)

k2A = 15:4 (�)

�A = 104 (kPa)

Table 1: Elastic material parameters ci, k1 i, k2 i, i = M;A, for the media M and adventitia A, and
penalty parameters �i.

5.1.2 Viscoelastic material parameters

As mentioned above, the dissipation of arterial soft tissues in cyclic loading is relatively insensi-
tive over a wide frequency spectrum. The intention now is to use experimental data for a human
LAD, since it has already been used for the identification of the elastic material parameters. Un-
fortunately, only a few experimental studies in the literature deal with the viscoelastic behavior
of human LADs in a multi-dimensional regime (for in vitro inflation tests see, for example, the
data book edited by ABÈ et al. [1996]).

For the present work, we adopt the in vitro study by GOW & HADFIELD [1979], in which dy-
namic (Cdyn) and static (Cstat) incremental (Young’s) moduli for three human coronary arteries
were measured at an internal pressure of pi = 13:33 (kPa), i.e. 100 mm Hg. The mean ratio of
Cdyn=Cstat was obtained as 2:33. This value is based on measurements at 2 Hz. Unfortunately,
measurements for a whole range of frequencies, which would be necessary to completely de-
scribe the viscoelastic response, are not presented therein (and not found elsewhere). Neverthe-
less, by taking the ratio between dynamic and static moduli, we are able to compute a restriction
on the free-energy factors �1� , � = 1; : : : ; m (see eqs. (25)).

Before examining this restriction it is necessary to know the deformation state of the coronary
artery under the loading conditions (mean inflation pressure of pi = 13:33 (kPa)) used in the
study by GOW & HADFIELD [1979]. Gow and Hadfield stretched the artery until no buckling
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Figure 4: Distribution of the circumferential stretch �� across the coronary arterial wall at in-
ternal pressure pi = 13:33 (kPa) and fixed axial stretch �z = 1:0.

occurred during pressurization. No specific axial stretch was given in their paper, so we took the
value �z = 1:0. From an (elastic) finite element calculation we may determine the distribution
of the circumferential stretch �� across the arterial wall (see Figure 4). As can be seen, �� is
nearly uniform across the (current) thickness of the media and adventitia. This result emanates
from the consideration of residual stresses (for a discussion see TAKAMIZAWA & HAYASHI

[1987], OGDEN & SCHULZE-BAUER [2000], HOLZAPFEL et al. [2000]). The stretch �� is
discontinuous at the media/adventitia interface which is due to the assumption that the reference
configurations of the two layers are independent.

The almost uniform stretch distribution allows us to express the (dynamic) second Piola-
Kirchhoff stress in the circumferential direction, say Sdyn, in the simple form

Sdyn = kMSM + kASA; (38)

where SM, SA are the stresses associated with the media and adventitia, while kM, kA are the
geometrical ratios of the medial and adventitial thickness with respect to the thickness of the
whole arterial wall (the values for our example are 2=3 and 1=3, respectively). Note that the
stress Sdyn is associated with the dynamic incremental moduli Cdyn = (@Sdyn=@��)=��.

Based on the statements of Section 2.1 that viscous effects are attributed mainly to the mechan-
ical behavior of smooth muscle cells, we associate the time-dependent response with the media,
which is the heterogeneous arterial layer containing a very large muscle content. By analogy
with eq. (18), we may write

SM = (S1 +

mX
�=1

Q�)M; SA = S
1

A (39)
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for the (second Piola-Kirchhoff) stress response in the circumferential direction. Herein the
superscript (�)1 denotes the elastic stress response of a sufficiently slow process, as t ! 1,
while Q� are non-equilibrium stresses. Note that a sufficiently fast process gives the conditions
Q�M = �

1

� S
1

M for the media (see eq. (26)). Substituting eqs. (39) into (38) and using the initial
conditions we obtain

Sdyn = Sstat + kM

mX
�=1

�
1

� S
1

M ; with Sstat = kMS
1

M + kAS
1

A ; (40)

where Sstat denotes the (static) second Piola-Kirchhoff stress in the circumferential direction
of the arterial wall, i.e. the stress at the equilibrium state. Stress Sstat is associated with the
static incremental moduli Cstat = (@Sstat=@��)=��. Hence, the ratio of the incremental Young’s
moduli in the circumferential direction reads

Cdyn

Cstat
=

1

��

@Sdyn

@��

1

��

@Sstat

@��

= 1 +

kM

mX
�=1

�
1

�

kM + kA
C
1

A

C
1

M

; (41)

where we used the definitions C1M = (@S1M =@��)=�� and C1A = (@S1A =@��)=�� of the (cir-
cumferential) elastic stiffness response for the media and adventitia, respectively (as t ! 1).
Since the strain states in the media and adventitia are known (see Figure 4), a simple (analytical)
calculation gives the ratio C1A =C

1

M = 0:36. Thus, from (41)2, we find that
mX
�=1

�
1

� = 1:57 (42)

must hold, which restricts the free-energy factors �1� , � = 1; : : : ; m. In order to identify the
viscoelastic parameters �1� and ��, � = 1; : : : ; m, we need further information.

In the following we make use of the well-established insensitivity of the dissipation of arter-
ies exposed to cyclic loading, as documented by, for example, CHEN & FUNG [1973] and
TANAKA & FUNG [1974] using (one-dimensional) extension tests. We aim to model this type
of test (performed in the circumferential direction) by means of the proposed viscoelastic (rhe-
ological) model (see Section 3.3.1), and to linearize it in the neighborhood of the physiological
extension. As a result we obtain a one-dimensional generalized Maxwell model, as illustrated
in Figure 5(a) (for an extensive discussion see HOLZAPFEL [2000], Section 6.10). This sim-
ple model is suitable for representing quantitatively the viscoelastic response of circumferential
segments of arteries, as documented in TANAKA & FUNG [1974].

The stiffnesses of the springs (taken as linearly elastic) are determined by Young’s moduli
c > 0 and c� > 0, � = 1; : : : ; m. The flow behavior is modeled by a Newtonian viscous fluid
responding like a dashpot and specified by the viscosity �� = c��� > 0, � = 1; : : : ; m. For this
rheological model the normalized dissipation ŴD may be expressed for each cycle as

ŴD = �c

mX
�=1

�
1

� ��jv̂
?
�jjû

?
�j; (43)

with jv̂?�j =
p
Re(v̂?�)

2 + Im(v̂?�)
2
; and jû?�j =

p
Re(û?�)

2 + Im(û?�)
2
; (44)
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Media

�
1

1 = 0:353 (�)
�1 = 0:001 (s)

�
1

2 = 0:286 (�)
�2 = 0:010 (s)

�
1

3 = 0:298 (�)
�3 = 0:100 (s)

�
1

4 = 0:285 (�)
�4 = 1:000 (s)

�
1

5 = 0:348 (�)
�5 = 10:00 (s)

Table 2: Viscoelastic material parameters for the media.

where v̂?� and û?� are the normalized complex (internal) velocities and displacements, respec-
tively. For an explicit derivation the reader is referred to the Appendix A.

Finally, we have to specify the Young’s modulus c > 0 of the free spring, which is required
for relation (43). A simple tension test on the media in the circumferential direction allows the
stress to be expressed in terms of the circumferential stretch �� (see HOLZAPFEL [2000]). By
taking the mean value of the known (physiological) circumferential stretch of the media, which
is �� = 1:36 (see Figure 4), and the elastic material parameters for the media (see Table 1), it is
straightforward to derive the elastic stiffness c = 634:0 (kPa).

In order to quantify the material parameters we choose a set of five Maxwell elements (m = 5)
and a set of relaxation times �1; : : : ; �5 that cover a time domain of four decades. The free-energy
factors �1; : : : ; �5 are determined iteratively in such a way that the normalized dissipation ŴD

is (approximately) constant between frequencies f = 0:01 (s�1) and f = 100:0 (s�1). This
frequency domain is sufficient for the investigation of physiological loading. By employing
eq. (43) and condition (42) we may identify the free-energy factors. As a result of the identifica-
tion process, the complete set of viscoelastic material parameters for the media are summarized
in Table 2.

Figure 5(b) shows a plot of the normalized dissipation ŴD versus frequency f based on use of
this set of parameters. The solid line denotes the dissipation for the whole rheological model,
while each dotted line is associated with a specific Maxwell element. As can be seen, the use
of five Maxwell elements gives quite good (constant) dissipation response over four decades.
Note that a viscoelastic model based on a single relaxation time, such as can be found in the
literature, would never be able to describe the dissipation response of arterial soft tissues under
cyclic loading.
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Figure 5: Rheological model for one-dimensional extension tests. (a) Generalized Maxwell
model with m Maxwell elements arranged in parallel. (b) Normalized dissipation
ŴD versus frequency f using five Maxwell elements (m = 5) and the viscoelas-
tic material parameters for the media according to Table 2. The solid line denotes
the dissipation of the whole rheological model, while each dotted line is associated
with a specific Maxwell element. Note that ŴD is (approximately) constant between
frequencies f = 0:01 (s�1) and f = 100:0 (s�1).

5.2 Viscoelastic behavior of an artery under static and dynamic boundary
loadings

Two representative numerical examples investigate the viscoelastic behavior of a healthy and
young arterial segment, considered as a two-layer thick-walled tube under static and dynamic
boundary loadings. For both examples we take the opened-up geometry of a circular cylindrical
tube, as shown in Figure 3, and the elastic and viscoelastic material parameters according to
Tables 1 and 2.

In the first example we compare the axial relaxation and creep responses under combined bend-
ing, inflation and axial extension of the segment, with (one-dimensional) experimental data of
TANAKA & FUNG [1974]. The second example considers the dynamic inflation of the arterial
segment subjected to sinusoidal pressure loads. The inner diameter response is investigated in
regard to changes in internal pressure and frequency. Sufficiently slow and fast processes, for
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+) versus time t at axial force Fz = 25:85 (mN).

which viscous effects are absent, are studied as limiting cases.

5.2.1 Axial relaxation and creep test

We consider the opened-up geometry of a circular cylindrical tube (Figure 3). Bending de-
formations are applied to the open medial and adventitial sectors to give a closed two-layer
thick-walled tube, which is then stretched to �z = 1:1 in the axial direction (simple tension)
and fixed subsequently at this elongation. These two processes are performed rapidly so that no
time remains for relaxation. Hence, we assume that the relaxation process starts at t = 0+ (for
computational reasons we have chosen the deformation period to be 10�7 (s)).

Now the axial reaction force, say Fz, is computed as a function of time and normalized with the
axial reaction force at t = 0+. Figure 6 shows the relaxation of the normalized axial reaction
force, which is denoted by the ratio kF = Fz(�z; t)=Fz(�z; 0

+), versus time t at axial stretch
�z = 1:1. The (linear) decrease of kF is indicated by triangles, while thermodynamic equilib-
rium (no change in the values of the state variables at any particle of the system) is reached at
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kF = 0:785 after some time.

In order to compute the arterial response due to creep, we apply an axial force of Fz =

25:85 (mN) on the closed tube, which is then kept fixed during the creeping process. By analogy
with the above, the viscoelastic process starts at t = 0+. The value of Fz is chosen so that the ax-
ial stretch �z of the arterial segment is 1:1 at t = 0+, which gives the same initial conditions as
in the relaxation test. Now the axial stretch �z is computed as a function of time and normalized
with �z = 1:1. Figure 6 shows the creep of the normalized axial stretch, which is denoted by the
ratio k� = �z(Fz; t)=�z(Fz; 0

+) = �z=1:1, versus time t at axial force Fz = 25:85 (mN). The
(linear) decrease of k� is indicated by squares, while thermodynamic equilibrium is reached at
k� = 0:779. In comparison with experimental data (see TANAKA & FUNG [1974]) the results
given in Figure 6 represent qualitatively the typical viscoelastic behavior of arterial segments.

5.2.2 Dynamic inflation test

The second example investigates the dynamic inflation of the arterial segment of the muscu-
lar type under different dynamical loading characteristics. The inner diameter response is in-
vestigated in regard to changes in internal pressure and frequency. Sufficiently slow and fast
processes, for which viscous effects are absent, are studied as limiting cases.

To achieve a closed two-layer thick-walled tube (pure) bending deformations are applied to the
open medial and adventitial sectors. The closed tube is then inflated up to the internal pressure
pi = 13:33 (kPa), axially stretched up to �z = 1:1 (simple tension) and then fixed at this
elongation. We consider a time period of 106 (s) in order to compute the equilibrium state of the
arterial segment, which we use as the reference state.

Starting from this state we subject the arterial segment to a sinusoidal pressure load p i(t) varying
between 10:67 (kPa) and 16:0 (kPa) and representing the change of blood pressure between
the diastolic and systolic phases. We study load cycles with the specific frequencies of f2 =

100:0 (s�1), f3 = 1:0 (s�1) and f4 = 0:001 (s�1). The evolution of the inner diameter di with
internal pressure pi for each of the given frequencies is plotted in Figure 7, and indicated by
solid lines. The hysteresis loops demonstrate the typical insensitivity to the frequency over
several decades.

As can be seen, the loading and unloading cycles involve about the same dissipation, which is
represented by the area between the curves (a measure of the non-recoverable energy). In addi-
tion, the deformation responses are stiffer at higher frequencies, a fact which has already been
reported by several researchers (see, for example, LEAROYD & TAYLOR [1966] and FUNG

[1971]) and which could not be modeled using pseudo-elasticity. Note that the hysteresis is
quite small, which is due to the small amplitudes of the pressure loads.

We also investigate sufficiently fast processes, f1 ! 1, and sufficiently slow processes, f5 =
0:0 (s�1) (enough time remains for the arterial segment to adjust itself internally). For compu-
tational reasons we have chosen the frequencies to be f1 = 105 (s�1) and f5 = 10�5 (s�1).
These two limiting cases describe (reversible) processes during which the arterial segment is
in equilibrium at all times and are associated with stiffest and softest responses, respectively.
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Figure 7: Evolution of the inner diameter di of an arterial segment subjected to static and dy-
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cases f1 = 0:0 (s�1) and f5 ! 1 of the frequencies, representing the stiffest and
softest (elastic) responses, respectively.

Viscous effects do not arise and the normalized dissipation ŴD is zero. The numerical results
are plotted in Figure 7 and indicated as dotted curves.

6 Conclusion

In this paper we presented a continuum and numerical setting for a two-layer constitutive model
of the viscoelastic three-dimensional stress and deformation response at finite strains, suit-
able for the structural description of healthy young arterial walls in the passive state of the
smooth muscles. All constitutive expressions presented are limited to stresses and strains in
the physiological range. This work is an extension to the viscoelastic regime of a recent paper
by HOLZAPFEL et al. [2000] dealing with a constitutive framework for the description of the
elastic response of arterial tissue.

After reviewing arterial histology, particular attention has been paid to incorporating important
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histological information in the constitutive model, specifically the orientations of the collagen
fibers obtained from a statistical analysis of histological sections from each arterial layer. An
algorithmic technique was presented that allows identification of the distribution of the collagen
fiber orientations for each arterial layer.

Each solid mechanically relevant layer (media and adventitia) is treated as a fiber-reinforced
composite with the fibers corresponding to the collagenous component of the material. The spe-
cific constitutive structure for each layer is based on a decomposition of the local stresses into
three parts, associated with the volumetric and isochoric elastic stress response (responsible for
the equilibrium state), and the viscoelastic stress response (responsible for the non-equilibrium
state). The resulting orthotropic constitutive equation for each layer, given in Lagrangian de-
scription, is a function of structural tensors which are the dyadic products of (collagen) fiber
directions. Appropriate evolution equations for each of the (isochoric) non-equilibrium stresses
and for each constituent of the arterial layer describe the evolution of the viscoelastic process in
arteries and guarantee that the hysteresis occurring during a cycling process is relatively insen-
sitive to strain rate over several decades, a crucial mechanical feature of arteries of the muscular
type.

On the numerical side, we presented some key aspects, in particular, a three-field functional
from which the stationary points were derived. This has led to the nonlinear variational formu-
lation (Euler-Lagrange equations) of the problem in the Lagrangian form, on which the corre-
sponding mixed finite element formulation was based. This approach together with Uzawa’s up-
date algorithm has led to a numerically stable solution of the nonlinear boundary-value problem,
and is capable of representing the purely isochoric response of arteries by avoiding numerical
difficulties such as ‘locking’ and ‘checkerboard’ phenomena.

The continuum and numerical formulations have been applied to the structural analysis of a
healthy and young arterial segment under various boundary loadings. A proposed identification
process of the material parameters provided the necessary set of values. Knowing that the (in
vitro) residual stress field has a significant effect on the global mechanical behavior and the
stress distribution through the deformed arterial walls, we considered the unstressed (and un-
strained) configuration of each layer to be an open sector of a thick-walled tube, which is closed
by an initial bending to form a load-free (and stressed), circular cylindrical configuration. Two
representative examples have been constructed to explore the viscoelastic behavior of a healthy
and young muscular arterial segment under static and dynamic boundary loadings within the
context of a finite element analysis.

The proposed constitutive framework can be used to study arterial wall mechanics specifi-
cally, or, more generally, soft tissue biomechanics, and offers many interesting (but complex)
boundary-value problems for investigation. The structural model seems to be sufficiently accu-
rate to warrant its application in the prediction of reliable stress distributions, and is suitable for
large scale finite element computation.
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Appendix A. Derivation of formula (43)
Let F (t) = F0 exp(j!t) be the (cyclic) force applied to the rheological model illustrated in
Figure 5(a), and let u be an external variable which measures the total displacement due to the
force. Here F0 is the amplitude, ! is the angular velocity and j is

p
�1. The (complex) equation

of equilibrium for the global system reads,

F � cu�
mX
�=1

(u� u�)c� = 0; (45)

where u�, � = 1; : : : ; m, are internal variables, which we interpret as (inelastic) displacements
on each dashpot, and c > 0 and c� = c�

1

� > 0, � = 1; : : : ; m, denote Young’s moduli which
characterize the stiffnesses of the associated springs. In addition to eq. (45) we have to fulfill m
internal constitutive equations of equilibrium, i.e.

(u� u�)c� � �� _u� = 0; � = 1; : : : ; m; (46)

where �� _u� is the non-equilibrium stress (internal variable) in the dashpot of the �-Maxwell
element characterizing the dissipation mechanism of the viscoelastic model.

Since we are interested in the homogeneous solution of eqs. (45) and (46), we introduce the
following Ansatz for the displacements, i.e.

u = u
? exp(j!t); u� = u

?
� exp(j!t); � = 1; : : : ; m; (47)

with the complex values u?, u?�, � = 1; : : : ; m, for the displacements. Using eq. (47) and the
cyclic loading process F (t) = F0 exp(j!t), we find from (45) and (46) that

F0 � cu
? +

mX
�=1

(u? � u
?
�)c� = 0; u

?
�(c� + ��j!)� c�u

? = 0; � = 1; : : : ; m: (48)

By means of (48)2, u?� can be substituted into eq. (48)1, which, after some algebraic manipula-
tions, reads

û
? =

u
?

F0

= Re(û?) + jIm(û?); Re(û?) =
A

A
2 +B

2
; Im(û?) =

B

A
2 +B

2
; (49)

where û? denotes the normalized complex displacement of the system and the quantities A and
B are given by

A = c+

mX
�=1

(��!)
2

1 + (��!)2
; B = �

mX
�=1

��!

1 + (��!)2
: (50)

Expressing u? in eq. (48)2 through eq. (49), the normalized complex amount of the internal
displacements reads, after some straightforward manipulations,

û
?
� =

u
?
�

F0

= Re(û?�) + jIm(û?�); � = 1; : : : ; m; (51)
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with the real and imaginary parts,

Re(û?�) =
A+ ��!B

[1 + (��!)2](A2 +B
2)
; Im(û?�) =

B � ��!A

[1 + (��!)2](A2 +B
2)
; � = 1; : : : ; m: (52)

In order to give an analytical expression for the dissipation of the model, we have to derive the
normalized complex amount of the internal velocities v̂?� = _̂

u

?

�, � = 1; : : : ; m. Using (51) we
find that

v̂
?
� =

v
?
�

F0

= Re(v̂?�) + jIm(v̂?�); � = 1; : : : ; m; (53)

with the real and complex parts

Re(v̂?�) = �!Im(û?�); Im(v̂?�) = !Re(û?�): (54)

Since displacement and velocity are known for each dashpot, we are able to derive the nor-
malized dissipation ŴD of the system for each cycle. By means of the expressions Re(v̂?�) =
jv̂?�j cos(!t+ �=2) and Re(û?�) = jû?�j cos(!t) we find that

ŴD =

mX
�=1

t+ 2�

!Z
t

��Re(v̂
?
�)Re(dû

?
�) = �

mX
�=1

��!jv̂?�jjû
?
�j

t+ 2�

!Z
t

cos(!�t+
�

2
) sin(!�t)d�t

| {z }
��=!

; (55)

with jû?�j =
p
Re(û?�)

2 + Im(û?�)
2 and jv̂?�j =

p
Re(v̂?�)

2 + Im(v̂?�)
2
: (56)

By using the definition �� = ��=c� of the relaxation times and c� = c�
1

� we obtain from
eq. (55)2 the desired result ŴD = �c

Pm
�=1 �

1

� ��jv̂?�jjû?�j.
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